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Summary

The research program involved a collaborative effort between the Johns Hopkins Univer-
sity (JHU, prime contractor) and Sandia National Laboratories (SNL, subcontractor) that
specifically aimed at:

1. Construction of uncertainty quantification (UQ) methods for microfluid applications
involving transport and kinetics;

2. Development of computational techniques that implement these methods;

3. Assembly of uncertainty modules in a computational code that simulates a multicom-
ponent reacting mixture; and,

4. Demonstration of UQ schemes and decision support capabilities.

A novel probabilistic approach to UQ in a detailed electrochemical microchannel flow
was adopted. The key concept in this approach is to consider the uncertainty as generating
a new dimension, and to regard the solution as being dependent on this dimension. A
convergent expansion along the new dimension is then sought in terms of the Polynomial

Chaos (PC) system, and the coefficients in this representation are determined through a weighted

residual formalism. Solution of the resulting stochastic governing equations is then used
to efficiently obtain accurate predictions of the mean solution and to quantify uncertainty
around the mean.

Consisent with the program objectives, the PC-based UQ approach was applied to a
detailed physical model of electrochemical microchannel flow. The physical formulation in-
corporates realistic models for the dependence of mixture properties on local species concen-
trations, the variation of the ζ-potential with local mixture conditions, and buffer behavior.
It also relies on a specially-tailored, mixed differential-algebraic construction that efficiently
accommodates both fast electrolyte buffer chemistry and slow bio-reaction kinetics.

A modular approach to code design was adopted. The code consisted of three main
modules, each incorporating optimized numerical constructions for the solution of: (a) the
transient flow field, (b) the species concentrations, and (c) the electrostatic field. One of
the advantages of this modular construction is that it efficiently accommodates different bio-
reactions, buffer solutions as well as operating and boundary conditions. The computational
code constructed relies on finite-difference discretization of the stochastic model equations.
Solution of the momentum equations is accomplished using a stochastic projection method
(SPM) which was developed during the course of the project. The construction of SPM
exploits the decoupled nature of stochastic divergence constraints and results in an efficient
solution algorithm which scales linearly with the number of stochastic degrees of freedom.
Numerical tests also demonstrate that stochastic modeling errors decay exponentially with
increasing refinement in the stochastic dimensions. Thus, the scheme exhibits substantial
computational advantages over Monte-Carlo (MC) techniques.
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Meanwhile, integration of the species concentration equations is performed using a specially-
tailored operator-split discretization that is combined with an upwind stochastic discretiza-
tion of the transport terms. Coupled with the differential-algebraic chemistry formulation,
the construction defeats the stiffness of the governing equations due to disparity between
chemical and diffusion timescales. Solution of the non-linear algebraic constraints associated
with fast buffer kinetics is performed using an adapted Newton solver. Non-linear operations
on stochastic quantities are computed using the UQ toolkit, a software library that was also
developed during the project. The utility of this toolkit was demonstrated during the con-
struction of the stochastic code as well as in combination with simplified CAD models. In
the former area, the UQ toolkit resulted in an elegant code formulation which resulted from
an efficient generalization of the deterministic base formulation. In the latter case, the UQ
toolkit enabled incorporation of UQ and decision-support capabilities into CAD models.

Construction of the stochastic code was completed by combininig momentum and species
concentration modules with a multigrid module for the solution of the electrostatic field.
The stochastic multigrid module inverts the non-separable elliptic equations for the stochas-
tic electrostatic field. The multigrid construction combines generalized multi-dimensional
coarsening and refinement iterations with a one-dimensional line relaxation scheme. This
combination results in an efficient construction which defeats the spatial complexity due to
the large aspect ratios encountered in microchannel domains.

The combined physical modeling, UQ and decision-support capabilities achieved through
the development of the stochastic code were demonstrated through applications of the code
to transient computations of protein-labeling reactions in two-dimensional electrochemical
microchannel flow.
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1 Introduction 
 
1.1 General 
 
This final report highlights research activities conducted under a research program entitled, 
“Quantitative Uncertainty Assessment and Numerical Simulation of Micro-Fluid Flows."  
The research effort was supported by the Defense Advanced Research Projects Agency 
(DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, un- 
der agreement number F30602-00-2-0612. The period of performance was June 28, 2000 - 
December 31, 2003.   

The research program involved a collaborative effort between the Johns Hopkins Uni-
versity (JHU, prime contractor) and Sandia National Laboratories (SNL, subcontractor).  
The Principal Investigators (PIs) at JHU were Profs. Omar Knio of the Mechanical 
Engineering Department and Roger Ghanem of the Department of Civil Engineering; the PI 
at SNL was Dr. Habib Najm of the Combustion Research Facility. The project also involved 
collaborative effort with Prof. Olivier Le Maitre of the Universite d'Evry. Prof. Le Maitre's 
involvement was made possible through several summer visits that were directly supported 
by this research program.  During the academic year, Prof. Le Maitre also contributed to this 
program through efforts supported in part by CNRS, through affiliation with the Laboratoire 
d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, Orsay, France. A summary 
of personnel involved in the project is provided in Appendix A. 
 
1.2 Motivation 
 
The design of micro-fluidic systems for biological or chemical sensing depends critically on 
the ability to accurately predict complex transport and reaction phenomena that inherently 
depend on a multitude of length- and time-scales. In many situations, this task is 
complicated due to uncertainties that arise from diverse sources. These include inexact 
knowledge of system forcing, initial and boundary conditions, as well as parametric 
uncertainties in the physical model and in physical properties of the medium. These 
properties may exhibit a random component with significant spatial or temporal fluctuations, 
or may be known in an approximate fashion. A prominent example concerns chemical or 
biological systems, whose modeling involves complex kinetic mechanisms which may 
include dozens of species - each characterized by thermodynamic and transport properties - 
and hundreds of elementary reactions - specified in terms of rate parameters. Transport 
properties and rate parameters exhibit nontrivial dependence on the thermodynamic state 
and this dependence must also be parameterized. Thus, micro-fluidic devices are described 
by complex physical models having a large number of parameters that are known in an 
approximate fashion only. Several factors, including measurement error and simplified 
calculations/approximate estimates, contribute to this parametric uncertainty. In some 
situations involving biological systems, this difficulty is further compounded by incomplete 
or partial knowledge of the relevant reactions. Consequently, in order to become effective 
tools, it is essential for simulation-based design approaches to include a rational assessment 
of uncertainty. 



Quantitative uncertainty propagation is also a crucial step in the evaluation of system
performance, which may be affected for instance by environmental parameters that are dif-
ficult to observe in a laboratory setting. Thus, it is also essential to predict the impact of
various combinations of external parameters and to quantify “off-design” behavior. This
issue is of prime importance for micro-fluidic detection devices, whose susceptibility to false
positives and false negatives must be carefully assessed in order to avoid potentially disas-
trous consequences. Performance analysis should also address the vulnerability of the system
to changes in environmental conditions, such as temperature, humidity, and airborne chem-
icals. These conditions may significantly alter system behavior, and it is crucial to develop
an understanding of these changes so that adequate design and deployment strategies can
be formulated. It is also essential to conduct such analyses during the design stages, so as to
avoid or minimize costly field trials. Managing uncertainty and mitigating its consequences
is crucial for controlling the confidence in the predictions of computer simulations of mi-
crofluidic devices, as it provides a rational coupling between prediction error control and
available or required data.

1.3 Objectives

Microfluidic simulation and design tools existing at the start of the program generally lacked
the necessary capabilities for quantitative uncertainty assessment. This project aimed at ad-
dressing this need, namely by developing computational uncertainty propagation and man-
agement methods that are ideally-suited for incorporation into microfluidic system simulation
and design tools. The general objectives of the project were:

1. Construct uncertainty quantification (UQ) methods for microfluid applications involv-
ing transport and kinetics;

2. Develop computational techniques that implement these methods;

3. Assemble uncertainty modules in a parallel code that simulates a multicomponent
reacting mixture;

4. Demonstrate application of uncertainty quantification schemes and decision support
capabilities.

As further described in section 2, the uncertainty representation and quantification approach
was based on a spectral Galerkin method. The key concept in this approach is to consider the
uncertainty as generating a new dimension, and to regard the solution as being dependent
on this dimension. A convergent expansion along the new dimension is then be sought
in terms of the Polynomial Chaos system, and the coefficients in this representation can be
determined through a weighted residual formalism. The proposed approach naturally results
in an efficient uncertainty propagation scheme and consequently avoids the prohibitive costs
of Monte-Carlo-type approaches. A second major advantage of the proposed approach is that
it efficiently yields quantitative estimates of the sensitivity of the solution to uncertainties
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in input parameters, and in initial and boundary conditions. Moreover, it can adequately
accommodate correlated inputs, probe the dependence of specific observables on particular
components of the input data, and quantify the sensitivity of the parameters with respect
to the solution at various spatial locations (inverse problem). This quantitative information
is in a format that permits it to be readily used in designing experiments to better calibrate
and test the validity of postulated models, or in assessing “off-design” performance.
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2 Approach

As mentioned in the introduction, our approach towards the representation of random input
data and solution variables is based on the so-called Polynomial Chaos decompositions [1,2].
PC methods rely on a probabilistic framework [3], which distinguishes them from alternative
approaches in uncertainty assessment including fuzzy set theories, interval analysis, convex
analysis, as well as linearization and perturbation methods. The fundamental concept on
which PC decompositions are based is to regard uncertainty as generating a new dimension
and the solution as being dependent on this dimension. A convergent expansion along
the new dimension is then sought in terms of a set of orthogonal basis functions, whose
coefficients can be used to quantify and characterize the uncertainty. The motivation behind
PC approaches includes its suitability to models expressed in terms of partial differential
equations, the ability to deal with situations exhibiting steep non-linear dependence of the
solution on random model data, and the promise of obtaining efficient and accurate estimates
of uncertainty. In addition, such information is provided in a format that permits it to be
readily used to probe the dependence of specific observables on particular components of
the input data, to design experiments in order to better calibrate or test the validity of
postulated models.

With the probabilistic framework of PC decompositions, a random variable is viewed
as a function of a single variable that refers to the space of elementary events. Similarly,
a stochastic process or field is then a function of n + 1 variables where n is the physical
dimension of the space over which each realization of the process is defined.

Contrary to Monte-Carlo (MC) simulation, which can be viewed as a collocation method
in the space of random variables, PC decompositions are based on coupling Hilbert space
concepts –specifically projections of random functions– directly with models of computational
mechanics. Random variables, defined as measurable functions from the set of basic events
onto the real line, provide the mechanism for achieving such coupling, and the solution to
the problem will be identified with its projection on a set of appropriately chosen basis
functions. This approach is thus consistent with the identification of the space of second-
order random variables∗ as a Hilbert space with the inner product on it defined as the
mathematical expectation operation [4]. This Hilbert space structure is very convenient as
it forms the foundation of many methods of deterministic numerical analysis; in addition,
projections on subspaces as well as convergent approximations can now be unambiguously
defined, quantified, and refined as necessary.

2.1 Random Variables and Processes

For brevity, we shall restrict our attention in this section to the case of Gaussian random
variables and processes. Recall that a Gaussian process, E(x, θ), can be characterized by its
covariance function REE(x, vy). Here, x and y are used to denote spatial coordinates, while

∗Second-order random variables are those random variables with finite variance, they are mathematically

similar to deterministic functions with finite energy.
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θ is used to denote the random nature of the corresponding quantity. Being symmetrical
and positive definite, REE has all its eigenfunctions mutually orthogonal, and they form
a complete set spanning the function space to which E belongs. It can be shown that if
this set of deterministic eigenfunctions is used to represent E, then the random coefficients
appearing in the expansion are also orthogonal. The represents can be expressed in terms
of the well-known Karhunen-Loève (KL) expansion [4]:

E(x, θ) = E(x) +
∞
∑

i=1

√

λiξi(θ)φi(x), (1)

where E(x) is the mean of the stochastic process, ξi(θ) are orthogonal random variables, while
φi(x) and λi are the eigenfunctions and eigenvalues of of the covariance kernel, respectively.
φi(x) and λi are the solution of the following integral equation:

∫

D
REE(x,y)φi(y)dy = λiφi(x), (2)

where D denotes the domain over which E(x, θ) is defined.
Note that the KL expansion is mean-square convergent irrespective of the probabilistic

structure of the process being expanded, provided it has finite variance [4]. The closer
a process is to white noise, the more terms are required in the expansion. Conversely, a
Gaussian random variable, α, be represented by a single term, i.e. the KL expansion can be
reduced to:

α = ᾱ + σαξ (3)

where ᾱ is the mean, σα is the standard deviation, and ξ is normalized Gaussian with unit
standard deviation.

2.2 Polynomial Chaos Decomposition

The covariance function of the solution process is not known a priori, and hence the KL
expansion may not be used to approximate it. Furthermore, even when the problem specifi-
cation only involves Gaussian parameters or processes, the solution process is not necessarily
Gaussian, so that the KL representation may not be a suitable approximation even when
much is known about the covariance function of the solution. Thus, an alternative represen-
tation means is needed, and the PC decomposition addresses this need.

Since the solution process, u, is a function of the random data, it is natural to seek to
represent it as a non-linear functional of the ξi’s that are used to represent the random data.
It can be shown [2] that this funcational dependence can be expressed in terms of polynomial
functions of the ξi, known as polynomial chaoses, according to:

u = a0Γ0 +
∞
∑

i1=1

ai1Γ1(ξi1) +
∞
∑

i1=1

∞
∑

i2=1

ai1i2Γ2(ξi1, ξi2) + . . . (4)

where Γn(ξi1, . . . , ξin) denotes the Polynomial Chaos [1,5] of order n in the variables (ξi1, . . . , ξin).
The polynomial chaoses are usually generalized multidimensional Hermite polynomials of
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independent variables that are measurable functions with respect to the Wiener measure.
In particular, when the independent variables are identified as the Gaussian vector ξ =
(ξ1, ξ2, · · · , ξn), one recovers the familiar expression of the expectation:

〈f〉 =
1

(2π)n/2

∫ ∞

−∞
f(ξ) exp

(

−
|ξ|2

2

)

dξ (5)

where |ξ|2 =
∑n

i=1 ξ
2
i .

The zero, first, and second-order polynomials are given by [6]:

Γ0 = 1, Γ1(|xii) = ξi, Γ2(ξi, ξj) = ξiξjδij (6)

where δij is the Kronecker delta. For computational purposes, the “generic” PC representa-
tion (4) must be suitably truncated, and this is typically performed by retaining polynomials
of order ≤ p, where p is a prescribed value. It is also convenient (section 3) to introduce a
one-to-one mapping between the set of indices appearing in the truncated sum corresponding
to (4) and a set of ordered indices, and rewrite the truncated sum in (4) in single-index form
according to:

u '
P
∑

j=0

ujΨj (7)

where the Ψj denote the polynomial chaoses in single-index notation, while P +1 is the total
number of polynomials chaoses of order ≤ p. Note that the for the one-dimensional case,
P = p, while in a space with n stochastic dimensions [7],

P =
(p+ n)!

p!n!
− 1. (8)

Note that the polynomials are mutually orthogonal, in the sense that the inner product
〈ΨiΨj〉 = 0 when i 6= j. Moreover, the set {Ψj}

∞

j=1 can be shown to form a complete basis
in the space of second-order random variables. Specifically, any second-order process u has
a mean-square convergent expansion given in equation (4) where Γp(.) is the Polynomial
Chaos of order p [2]. Also note that the PC expansion can be used to represent, in addition
to the solution process, both Gaussian and non-Gaussian model data. One can verify this by
observing that the first summation in an expansion of the form given by Eq. (4) represents
a Gaussian component; thus, for a Gaussian function, expansion (4) reduces to a single
summation, the coefficients ai1 being the coefficients in the Karhunen-Loève expansion of
the function [6,8]. Accordingly, the additional summations in the expansion are immediately
identified as representing the non-Gaussian behavior of the function in terms of a non-linear,
(polynomial) functional dependence on the independent Gaussian variables.

In order to obtain a complete probabilistic characterization of the solution process, u, it
is sufficient to determine the “deterministic” coefficients uj appearing in Eq. (7). Due to the
orthoganility of the Ψ’s, the coefficients of the PC expansion of u satisfy:

uj =
〈uΨj〉
〈

Ψ2
j

〉 , (9)
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for j = 0, . . . , P . As mentioned in the introduction, we shall primarily focus on determina-
tion of the uj’s using a Galerkin approach, and the latter is initially outlined for a generic
stochastic process, u, governed by:

O(u(ξ), ξ) = 0, (10)

where O is an non-linear operator. The Galerkin scheme is based introducing the expansion
(7) into (10) and taking orthogonal projections onto the truncated basis, which results in
the following system for the basis function coefficients:

〈

O

(

∑

i

uiΨi(ξ), ξ

)

,Ψj

〉

= 0, j = 0, . . . , P. (11)

Solution of the above coupled system then yields the desired coefficients. Below, we focus
on implementation of this approach to the incompressible NS equations.

2.3 Application to the Incompressible Navier Stokes (NS) Equations

Application of the PC decomposition above is illustrated by outlining the construction of
the stochastic projection method (SPM) as originally introduced in [9] (Appendix C). The
SPM focuses on the numerical solution of the incompressible NS equations:

∂u

∂t
+ (u ·∇)u = −∇p + ν∇2u (12)

∇ · u = 0 (13)

where u = (u, v) is the velocity vector, t is time, p is the pressure, and ν the kinematic
viscosity. For brevity, we focus on the solution of Eqs. (12-13) in a 2D domain, D, with
specified velocity boundary conditions on ∂D satisfying:

∫

Γ
undA = 0 (14)

where Γ = ∂D is the boundary of D, un is the component of u normal to Γ, and dA is the
surface element along Γ. We also restrict our attention to the case of a single parameter,
and illustrate the case of a Gaussian initial condition:

u(x, t = 0) = ū(x) + ξu′(x) (15)

where ξ is a Gaussian variable with unit variance, and ū(x) and u′(x) are given quantities.
Note that in the present case ū and u′ represent the mean and standard deviation of the
initial velocity field, respectively. One can immediately verify this claim from the definitions
of mean and variance applied to each of the velocity components. For instance, for the u
component, we have:

〈u(x, t = 0)〉 ≡ 〈ū(x) + ξu′(x)〉 = ū(x), and (16)

σu(x,t=0) ≡
〈

(u(x, t = 0)− 〈u(x, t = 0)〉)2
〉

= |u′(x)| . (17)

9



The development of the SPM is based on inserting the PC decompositions of all stochastic
quantities into the NS equations, and applying the Galerkin procedure to derive governing
equations for the individual modes appearing in these expansions. This results in a system
of the form:

∂uk

∂t
+

P
∑

i=0

P
∑

j=0

Mijk(u ·∇)u = −∇pk + ν∇2uk (18)

∇ · uk = 0 (19)

for k = 0, . . . , P . Note that the quadratic term involves a convolution sum involving the
multiplication tensor:

Mijk ≡
〈ΨiΨjΨk〉

〈Ψ2
k〉

(20)

Boundary and initial conditions are also decomposed in a similar fasion. In particular, for
the latter we have: u0(x, t = 0) = ū(x), u1(x, t = 0) = u′(x), and uk(x, t = 0) = 0 for
k = 2, . . . , P .

SPM relies a fractional step projection scheme in order to integrate the evolution equa-
tions of the stochastic modes. In a first fractional step, we integrate the coupled advection-
diffusion equations:

∂uk

∂t
+

P
∑

i=0

P
∑

j=0

Mijk(ui ·∇)uj = ν∇2uk (21)

for k = 0, . . . , P . An explicit multistep scheme may be used for this purporse. For instance,
for a second-order Adams-Bashforth scheme we have:

u∗
k − un

k

∆t
=

3

2
Hn

k −
1

2
Hn−1

k k = 0, . . . , P (22)

where u∗
k are the predicted velocity modes, ∆t is the time step,

Hk ≡ ν∇2uk −
P
∑

i=0

P
∑

j=0

Mijk(ui ·∇)uj, (23)

and the superscripts refer to the time level. In the second fractional step, a pressure correction
is performed in order to the divergence constraints on the velocity modes. We have:

un+1
k − u∗

k

∆t
= −∇pk k = 0, . . . , P (24)

where the pressure fields pk are determined so that the fields un+1
k satisfy the divergence

constraints in (19), i.e.
∇ · un+1

k = 0 (25)

Combining equations (24) and (25) results in the following system of decoupled Poisson
equations:

∇2pk = −
1

∆t
∇ · u∗

k k = 0, . . . , P (26)
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Similar to the original projection method [10], the above Poisson equations are solved, inde-
pendently, subject to Neumann conditions that are obtained by projecting equation (24) in
the direction normal to the domain boundary [10, 11].

One of the key advantages of SPM is that the numerical formulation effectively exploits
the fact that the velocity divergence constraints are decoupled, which results in a set of P +1
decoupled pressure projection steps. Since these steps typically account for the bulk of the
computational effort in incompressible flow simulations, the solution of the stochastic system
can be at essentially a cost of P+1 deterministic solutions. Coupled with the spectral nature
of the stochastic representation, this leads to a highly efficient stochastic solver, as illustrated
in Fig. 1 below.
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Figure 1: Dependence of the CPU time on the number of modes P in SPM computations of
internal, gravity-driven flow under stochastic temperature boundary conditions. The spatial
discretization is on a staggered, finite-difference grid, with conservative second-order differ-
ences. Results with first, second, and third-order PC expansions are reported, respectively
No = 1, 2, and 3. Adapted from [12].
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3 Results and Discussion

As mentioned in the Introduction, a central objective of the present project consisted of the
design and implementation of a stochastic solver suitable for accurate and efficient simulation
of a reacting multicomponent mixture in pressure- and electrokinetically-driven microchan-
nels, and for propagating and quantifying uncertainty in model predictions. In other words,
this task required generalization of the SPM outlined in section 2.3 to a detailed physical
model of electrochemical microchannel flow. In pursuing this objective, our effort addressed
several fundamental difficulties, due in large part to the disparate length- and time-scales
that characterize electrochemical microchannel flows. These difficulites include:

1. disparity between the timescales of bio-reactions between species in the mixture and
characteristic timescales of the buffer. The latter are typically orders of magnitude
smaller than the former, which results in a severe scale complexity and a stiff compu-
tational system.

2. disparity between timescales characterizing species diffusion and momentum diffusion.
Specifically, relevant flow conditions have low Reynolds number but high Peclet num-
bers, which results in computational challenges in the treatment of transport terms.

3. slender computational domains, having large ratios between channel length and channel
height. This generally results in high-aspect-ratio computational grids, and further
compounds difficulties in the treatment of transport and diffusion.

4. variable-mixture properties and the non-linear dependence of chemical reaction rates
and buffer chemistry on species concentrations. These result in additional challenges
in the treatment of stochastic terms which, unlike the example above, are no-longer
limited to quadratic products.

In order to overcome the difficulties above, we formulated a computational model that judi-
ciously combines:

• a detailed physical formulation that incorporates realistic models for buffer behavior
and the dependence of mixture properties on local composition;

• a mixed differential-algebraic formulation that defeats the chemical stiffness of the
equations of motion;

• an operator-split integration scheme that efficiently handles the time-scale disparity
between species and momentum diffusion;

• an efficient pseudo-spectral approach for the estimation of non-linear operations on
stochastic quantities; and,

• a specially-tailored stochastic multigrid method for the efficient solution of non-seperable,
stochastic, elliptic equations in slender domains.
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This section discusses the development of the stochastic, electrochemical microchannel flow,
and applications to that were performed to demonstrate the resulting capabilities. An outline
of the physical model for electrochemical microchannel flow first is provided in section 3.1.
Section 3.2 then summarizes the development of the computational code. Highlights from
selected applications are finally provided in section 3.3

3.1 Physical Formulation

A detailed model was developed of both electroosmotic and pressure-driven flow in a mi-
crochannel filled with an electrolyte buffer and model protein analyte samples. The con-
struction considers the fully coupled momentum, species transport, and electrostatic field
equations, including a model for the dependence of the ζ-potential on pH and buffer molarity.
A mixed finite-rate, partial-equilibrium formulation is applied for the chemical reactions. In
particular, “fast” electrolyte reactions are described by associated equilibrium constraints,
while the remaining “slow” protein labeling reactions are modeled with finite-rate kinetics.
As outlined below, the formulation involves coupled systems of equations that govern: (a)
momemtum transport, (b) species transport, and (c) electrostatic potential.

Momentum

The continuity and momentum equations for a two-dimensional flow field in the (x, y) plane,
with uniform density and viscosity are given by [13]

∇ · u = 0 (27)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u (28)

where u is the velocity, p is the pressure normalized by density, and ν is the kinematic
viscosity.

Without loss of generality, we assume that the microchannel flows are electroosmotically
driven with an applied electrostatic field in the x-direction. Assuming a double layer that is
thin with respect to the channel size, the effect of wall electrostatic forces can be represented
in terms of a wall slip velocity uw, using the Helmholtz-Smoluchowski relationship [13]

uw =
εζ

µ
∇tφw (29)

where ε is the permittivity of the fluid, ζ is the zeta potential, φw is the electrostatic field
potential at the wall, and µ is the dynamic viscosity. Since both the electrostatic field and
the ζ potential depend on the fluid composition, equation (29) represents a major coupling
between the flow velocity and the species transport.

The ζ potential is a function of the wall material and fluid characteristics [14,15]. In this
work, a relationship for ζ as a function of the local pH and buffer molarity was obtained
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Figure 2: Empirical data and curve fit for the ζ potential of a fused silica capillary versus
pH in an aqueous solution of KCl at various molarities. Adapted with permission from [16],
Copyright 1992 American Chemical Society.

from empirical data for the zeta potential of a fused silica capillary in an aqueous solution
of KCl, as shown in Fig. 2 [16]. This data was curve-fitted into the following relationship:

ζ(pH,M) =
{

−(pH− 2) +
(

1

2
+

1

2
tanh(5(pH− 7.5))

)

(pH− 7.6)
}

×
(

−2.7 ln(M+ 2.3× 10−4)
)

(30)

where M is the molarity of the KCl solution. The quantitative accuracy of this curve-fit is
obviously limited to systems similar to the one considered in [16]. However, equation (30)
qualitatively gives the correct behavior of ζ(pH,M) for various other systems [14, 15].

Species Concentrations

A variety of species are considered in this work, ranging from model proteins and dyes in
samples, to the ions of aqueous buffer solutions. The transport of these species is governed
by [13]:

∂ci
∂t

+∇ · [ci(u + ue
i )] = ∇ · (Di∇ci) + ŵi (31)
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where ci is the concentration of species i, and Di is the corresponding diffusivity. The
electromigration velocity ue

i accounts for the electrophoretic movement of electrically charged
species relative to the bulk flow. This velocity is given by [13]

ue
i = −βiziF∇φ (32)

where βi is the electrophoretic mobility for species i, zi is the charge number, F is the Faraday
constant (9.648 × 104 C/mol), and φ is the electrostatic field potential. The term ŵi is a
source term from the chemical and electrochemical reactions in which species i is involved.
Note that for each species, the diffusivity Di and the mobility βi are coupled through the
Nernst-Einstein equation [13]

Di = RTβi (33)

where R is the universal gas constant and T the temperature.
The integration of equation (31) is performed differently depending on the chemical

time scales involved. In general, electrolyte association and dissociation reaction rates are
several orders of magnitude faster than electrophoretic phenomena [17] and typical sample-
processing reactions. Thus, direct integration of fast reactions would impose severe time step
restrictions. In order to avoid these difficulties, an equilibrium approach for the electrolyte
reactions is implemented. For example, consider a weak acid HA, which dissociates according
to

HA
KA←→ H+ + A− (34)

where

KA ≡
[H+][A−]

[HA]
(35)

is the corresponding dissociation constant. Instead of integrating equation (31) for the
concentrations of species HA and A− individually, consider the combined concentration of
both of these quantities θa = [HA] + [A−]. The source terms for [HA] and [A−] from the
electrolyte reaction (34) cancel out in the θa transport equation, which is the sum of the
transport equations for the two individual quantities.

∂θa

∂t
+∇ · [cHA(u + ue

HA) + cA−(u + ue
A−)] =

∇ · [DHA∇cHA +DA−∇cA−] (36)

Therefore, barring any other chemical reactions involving these species, θa is a conserved
quantity and can be integrated with equation (36) without a chemical source term [18–
20]. Note that if the chemical source terms for HA or A− in equation (31) do include
participation by reactions other than the HA buffer chemistry, e.g. by (typically slow)
sample chemistry, then the utilization of θa is still advantageous in that it eliminates the fast
electrolyte reactions, but in this case θa is no longer a conserved scalar. In either case, one
arrives at a governing equation for θa, which does not include the fast reaction terms. Once
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θa is known, the concentrations of the individual components of the weak acid are obtained
from:

[HA] =
[H+]

[H+] +KA
θa ≡ αHA × θa (37)

[A−] =
KA

[H+] +KA
θa ≡ αA− × θa (38)

Note that this construction is equally useful for buffers with multiple dissociation states,
where θa is the sum of concentrations of the weak acid and all of its dissociated states. Since
the mobilities and diffusivities are generally different for the species that make up θa, the
convection and diffusion terms in the transport equation for θa are calculated as the sum of
the convection and diffusion for each species in θa. A similar approach holds for weak bases.

For strong acids and bases, which are fully dissociated in the solution, or for other species
that do not take part in electrolyte dissociation and association reactions, equation (31) can
be integrated directly.

In most of the cases studied in this work, the model proteins and fluorescent dyes were as-
sumed to have a fixed charge, so their concentrations could be integrated using equation (31),
with an appropriate finite-rate chemical source term.

In reality though, proteins typically have a large number of dissociation states. Therefore,
depending on the pH, their overall net charge can be either positive or negative, as indicated
by their titration curve. While it is conceptually possible to model each of the dissociation
reactions with its own dissociation constant, as described above for the weak acids and bases,
this is not practical for proteins due to the large number of dissociation reactions that would
have to be included. Instead, an ampholyte formulation was implemented in this work,
based on [19, 21–23]. In this formulation, all individual dissociation states of a protein are
lumped into one ampholyte species, with a net charge equal to the charge averaged over
all dissociation states of the protein. This net charge is determined as a function of pH
from an experimentally obtained titration curve for the protein. Given the large size of
a protein compared to the ions that dissociate from it, the protein diffusion coefficient D
is considered to be independent of its dissociation state. The electrophoretic mobility β ,
however, depends strongly on the ionic strength of the solution as modeled by the Debye-
Hückel-Henry description [21, 22]:

β =
eg(κr)

F6πµr(1 + κr)
(39)

where e is the unit charge (C) and r is the particle radius (m). The parameter κ (1/m) is
the inverse of the Debye length, defined as

κ =
1

λD
=

√

4× 103F 2I

εRT
(40)

In this equation I is the ionic strength (mol/l) of the solution defined as

I = 1/2
ns
∑

i=1

z2
i ci (41)
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with all concentrations ci in mol/l. Note that the summation for the ionic strength goes over
all ns species in the solution. However, since the charges in proteins are generally far apart
compared to the Debye length, the Linderstrøm-Lang approximation is used for proteins
in the solution. Under this appoximation, a z-valent ion with concentration c is assumed
to behave as a monovalent ion with concentration zc. Therefore, the contribution of each
protein i to the ionic strength in the solution is 1/2zici instead of 1/2z2

i ci [22]. Further, the
factor g(κr) is a dimensionless function that varies sigmoidally from 1 to 1.5 and the radius
of the protein is obtained from the Stokes equation [21]

r =
kT

6πµD
(42)

where k is the Boltzmann constant.
Since a thin double layer is assumed, the system is also assumed to satisfy the electroneu-

trality condition

∑

i

zici = 0 (43)

everywhere in the domain. The concentrations of H+ and OH− are obtained from this
electroneutrality condition and the water dissociation constant

[H+][OH−] = Kw (44)

Note that the composition, and therefore also the total charge, of weak acids and bases in
the system depends on the H+ concentration (see equations (37,38) above). The substitution
of equations (38) and (44) into the electroneutrality condition (43), in order to account for
the dependence of [A−] and [OH−] on [H+], introduces non-linear terms in this equation.
For buffers with multiple dissociation states, even more non-linear terms are introduced.
Therefore, an iterative solution of the electroneutrality condition for [H+] is usually required.

Electrostatic Field Strength

Allowing for concentration field gradients, the electrostatic field potential, φ is obtained from
the current continuity constraint [13],

∇ · (σ∇φ) = −F
∑

i

zi∇ · (Di∇ci) (45)

This equation is coupled to the species concentrations through the right hand side (diffusion
of charge) and the electrical conductivity σ of the solution

σ = F 2
∑

i

z2
i βici (46)

The electrostatic field strength is then obtained as E = −∇φ.
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Stochastic Formulation

The discussion above provided a detailed description of the key elements of the deterministic
model. When random inputs are present, a stochastic variant of the deterministic model
is used which is obtained in simular fashion as that outlined in section 2. Specifically,
PC decompositions of random parameters and solution variables are substituted into the
governing equations, and Galerkin projections are then used to derive evolution equations
for the PC coefficients. This results in the following system of coupled differential-algebraic
equations:

∂uk

∂t
= −

P
∑

i=0

P
∑

j=0

Mijk (ui · ∇) uj −∇pk +
P
∑

i=0

P
∑

j=0

Mijkνi∇
2uj (47)

∇ · uk = 0 (48)

∂cm,k

∂t
= −

P
∑

i=0

P
∑

j=0

Mijk∇ ·
(

cm,i(uj + ue
m,j)

)

+
P
∑

i=0

P
∑

j=0

Mijk∇ · (Dm,i∇cm,j) + ŵm,k (49)

P
∑

i=0

P
∑

j=0

Mijk∇ · (σi∇φj) = −F
∑

m

zm

P
∑

i=0

P
∑

j=0

Mijk∇ · (Dm,i∇cm,j) (50)

where

ue
m,j =

< Ψju
e >

< Ψ2
j >

=
P
∑

k=0

P
∑

i=0

MkijβkzF∇φi (51)

ŵm,k =
< Ψkŵ >

< Ψ2
k >

(52)

σi = F 2
∑

m

z2
m

P
∑

j=0

P
∑

k=0

Mjkiβm,jcm,k (53)

Equations (47), (49), and (50) each represent a set of P + 1 coupled equations to be
solved for the mode strengths uk, cm,k, and φk, k = 0, . . . , P .

3.2 Stochastic Electrochemical Microchannel Flow Code

The stochastic formulation outlined in section 3.1 above has been implemented in a flexible
computational code. As illustrated in Fig. 3, the code has a modular construction that
accommodates mixtures with different reacting species and buffer solution. A brief discussion
of the function of each of the modules is provided below.

Spatial discretization

The governing equations are discretized on a rectangular domain with a Cartesian mesh
of uniform cell size ∆x and ∆y in the x and y directions respectively. Field variables are
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Figure 3: Schematic illustration of the modular nature of the stochastic electrochemical
microchannel flow code.

defined following a staggered grid where vector quantities are defined at the cell faces while
the scalar quantities are discretized on the cell centers (Fig. 4). Unless otherwise noted,
second-order centered differences are used to approximate derivatives in the interior of the
domain.

Momentum

Numerical integration of the momentum equations is performed using a modified version
of the SPM outlined in section 2. In order to overcome the diffusive stability restrictions
associated with low-Reynolds-number flow, an operator split formulation is introduced. The
latter involves a mixed scheme where the convective term is treated using a third order
Adams-Bashforth scheme over the global time step ∆t, while the diffusion term is several
smaller substeps using a second-order Runge Kutta method. We symbolically express the
integration as:

u∗
k − un

k

∆t
= F

{

Cm
(n,n−1,n−2)
k ,Dm

(s),s=1,...,M
k

}

(54)

u
(n+1)
k − u∗

k

∆t
= −∇p

(n+1)
k (55)

where F symbolically represents the operator split action which depends on the convec-
tive term Cmk evaluated at three time steps tn, tn−1 and tn−2, and the diffusive term Dmk

computed at M substages between times tn and tn+1.
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Figure 4: Schematic illustration of the computational grid, showing the discretization scheme
for primary variables.

The pressure term needed in the second step is obtained by combining Eq. 55 with the
weak formulation of the continuity constraint

∇ · u
(n+1)
k = 0 k = 0, . . . , P (56)

resulting in a system of decoupled Poisson equations expressed as:

∇2p
(n+1)
k = −

1

∆t
∇ · u

(∗)
k k = 0, . . . , P (57)

A direct fast Fourier solver is used to invert Eq. (57) and thus determine the pressure modes
pk.

Concentration

Some of the species involved in electrochemical microchannel are characterized by very low
molecular diffusivities, which may be as low as 10−11 m2/s or smaller. Proteins are prominent
examples of such slowly-diffusing species. This situation leads to microchannel flows with
high Peclet numbers, which provides significant challenge to the computations. Well-known
difficulties include susceptibility of the discretization to develop spurious high-frequency
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wiggles, which in some situations may lead to breakdown of the computations. In order
to overcome these difficulties, a Godunov upwind scheme was developed for the spectral
formulation. Details of this upwind discretization are provided in [24].

In conjunction with upwind discretization of the convection terms, an explicit AB3 scheme
is used to update the concentration fields. We have:

cn+1
i − cni

∆t
=

23

12
Hn −

16

12
Hn−1 +

5

12
Hn−2 (58)

where
H ≡ −u∇ci +∇ · (Di ∇ci) + ŵi(c) (59)

and ∆t is the time step.

Electrostatic Field

Finite difference discretization of the electrostatic field equation results in the following linear
system of Nx ×Ny × (P + 1) equations:

P
∑

l=0

P
∑

m=0

Mklm [(Wl)i,j(φm)i+1,j + (El)i,j(φm)i−1,j +

(Nl)i,j(φm)i,j+1 + (Sl)i,j(φm)i,j−1 + (Cl)i,j(φm)i,j]

= (fk)i,j k = 0, . . . , P . (60)

where

(El)i,j = −
(σl)i+1,j + (σl)i,j

2∆x2

(Wl)i,j = −
(σl)i,j + (σl)i−1,j

2∆x2

(Nl)i,j = −
(σl)i,j+1 + (σl)i,j

2∆y2

(Sl)i,j = −
(σl)i,j + (σl)i,j−1

2∆y2

(Cl)i,j =
(σl)i+1,j + 2(σl)i,j + (σl)i−1,j

2∆x2
+

(σl)i,j+1 + 2(σl)i,j + (σl)i,j−1

2∆y2

(fk)i,j = −F
∑

s

zs

P
∑

l=0

P
∑

m=0

Mlmk∇ · (Ds,l∇cs,m) (61)

with indices i and j denoting the cell location.
In order to efficiently invert the system above, a specially tailored multigrid solver was

developed in [25]. The algorithm globally iterates over the spatial domain cells using a
Gauss-Seidel scheme:
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• Loop on ou (Gauss-Seidel index)

– For i = 1 to Nx, do

∗ For j = 1 to Ny, do

· Find (φk)
ou+1
i,j such that:

P
∑

l=0

P
∑

m=0

Mklm(Cl)i,j(φm)ou+1
i,j = (fn

k )i,j −

P
∑

l=0

P
∑

m=0

Mklm [ (Wl)i,j(φm)ou
i+1,j + (El)i,j(φm)ou+1

i−1,j +

(Nl)i,j(φm)ou
i,j+1 + (Sl)i,j(φm)ou+1

i,j−1 ]

≡ (Qk)
ou
i,j

k = 0, . . . , P (62)

∗ End of loop on j

– End of loop on i

• End of loop on ou

At each spatial location, Eq. (62) are inverted using successive over-relaxation (SOR) scheme,

which yields estimates of the stochastic modes (φk=0,...,P)
(ou+1)
i,j .

In its simplest form, known as V-cycle, the multigrid scheme consists of first solving
the original problem on the computational (finest) grid by running few iterations. This is
followed by iterating on the projected residuals on consecutively coarser grids. Once the
final (coarsest) grid level is attained, the solution is transferred to the previous grid level via
a prolongation step. Iterations are then performed on finer grid levels until the finest grid is
reached. The V-cycle is repeated until sufficiently small residuals are achieved on the finest
grid.

For slender domains, the convergence rate of the above multigrid solver is further en-
hanced using a line relaxation method, which essentially amounts to extending spatial coars-
ening to the larger spatial dimension. Convergence is accelerated due to the faster damping
of the long-wave error modes on the coarse quasi-1D grid, as well as the lower CPU cost
when relaxing the residual over a fewer number of cells [26]. For additional details on the
stochastic multigrid solver, see [25] (Appendix C).

Electroneutrality

As explained in section 3.1, the individual concentrations of the buffer ions and [H+] are
obtained from the electroneutrality condition. In the stochastic case, this condition results
in a set of non-linear algebraic relations between P + 1 stochastic modes. This coupled
non-linear system of equations is iteratively solved at each point in the domain, using a
Newton solver from the NITSOL package [27]. The solver uses an inexact Newton method
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with backtracking. Using the solution from the previous time step as initial guess, the
convergence is generally very fast.

UQ Toolkit

As mentioned earlier, the governing equations for the spectral mode strengths of the field
variables are obtained by substituting the PC expansions for those field variables in their
original, deterministic governing equations. Instead of explicitly writing out these equations
for the spectral mode strengths, it is also possible to retain the governing equations in their
original form, but take into account during the implementation that all arithmetic needs to
be performed on stochastic instead of deterministic variables.

To facilitate this approach, we developed an uncertainty quantification (UQ) toolkit†

which contains subroutines to perform most of the common operations on stochastic vari-
ables that are represented by PC expansions. Using this toolkit, many algorithms that were
originally designed for deterministic problems can easily be converted for stochastic compu-
tations by merely replacing mathematical operators with calls to their stochastic equivalent.
The details of some of these operations are explained below.

Aside from additions, one of the most common operations is the multiplication of two
stochastic variables. Consider two stochastic variables, u and v, with the following PC
representations:

u =
P
∑

i=0

uiΨi (63)

v =
P
∑

j=0

vjΨj (64)

We need to find the modes wk in the PC representation of w = uv:

w =
P
∑

k=0

wkΨk (65)

As mentioned before, these coefficients are obtained by using the orthogonality property of
the PC basis functions:

wk =
P
∑

i=0

P
∑

j=0

Mijkuivj k = 0, . . . , P (66)

Since the tensor Mijk is a function of the PC basis functions only, it only needs to be
calculated once during a preprocessing step and can then be stored for use throughout the
computations. The implementation of equation (66) also takes advantage of the fact that
this tensor is sparse, reducing the amount of storage and CPU time needed.

†To obtain a copy of the UQ toolkit users are directed to send a request to the PI at knio@jhu.edu.
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A similar procedure could also be used to determine the PC expansion for the product
of three stochastic variables g = uvw. This would give the spectral coefficients gk as

gl =
P
∑

i=0

P
∑

j=0

P
∑

k=0

Dijkluivjwk l = 0, . . . , P (67)

where

Dijkl ≡
〈ΨiΨjΨkΨl〉

〈Ψ2
l 〉

(68)

Instead of this pure spectral approach, however, a pseudo-spectral approach has been
developed in order to calculate products such as g = uvw by repeated use of the regular
product function. First the product uv is calculated with equation (66), and the result of
this multiplication is multiplied in the same way with w to give the PC expansion for g. The
advantage of this pseudo-spectral approach is that it does not require the evaluation and
storage of the fourth-rank tensor Dijkl, is more efficient, and is easy to generalize to products
of any number of variables. Some aliasing errors are introduced though in this approach,
but they were found to be negligible as long as the order of the PC expansions is chosen
sufficiently high.

Another frequent operation is the calculation of the inverse of a stochastic quantity.
To explain how this operation is implemented, consider again three stochastic variables, u,
v, and w, with their respective PC expansions given by equations (63–65). If we wish to
calculate u = w/v, then this implies w = uv, which is given by equation (66). This equation,
assuming the modes wk and vj are known, represents a system of P + 1 linear equations in
the unknown modes ui. Since it is a sparse system of equations, it is solved efficiently in this
work with a GMRES iterative solver, taken from the SLATEC library [28].

More challenging is the evaluation of non-polynomial functions of stochastic variables
such as exponentials and logarithms, which typically show up in chemical rate expressions.
These operations can be performed by expanding them in Taylor series around the mean of
the argument. For example, the exponential of a stochastic quantity u, with a PC expansion
given by equation (63), is computed as

eu = eu0

(

1 +
N
∑

n=1

dn

n!

)

(69)

where

d = u− u0 =
P
∑

i=1

uiΨi (70)

is the stochastic part of u. The powers dn are again calculated in a pseudo-spectral way with
the product formula (66), as dn = d dn−1, with dn−1 known from the previous term in the
Taylor series. The number of terms N in this truncated series is chosen adaptively to satisfy
a given tolerance level.

The Taylor series approach works reasonably well as long as the uncertainties in the field
variables are moderate and the probability density functions (PDFs) of those variables are
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not too skewed. For highly skewed PDFs, however, high order PC expansions are required
to capture this stochastic information, and the evaluation of high power terms dn in the
Taylor series can become inaccurate. In these situations, an alternative approach based on
integrations [7], can be used in order to provide more accurate estimates.

All the operations described above, among many others, have been implemented in the
UQ toolkit library. The UQ toolkit greatly facilitates the development of stochastic solvers
from scratch, as well as the conversion of existing deterministic routines into stochastic ones.

3.3 Applications and Demonstrations

Demonstration efforts conducted during this project fell within three main areas of appli-
cation. These include: (1) Development and application of a quasi-1D design model for
band-crossing reactions; (2) Application of the UQ toolkit to simplified CAD models; and
(3) Demonstration of combined detailed physical modeling and uncertainty quantification
capabilities for the case of protein labeling reactions in a microchannel. Applications in the
first two areas are discussed in detail [29] and in [24], respectively; for brevity, results of
these applications are omitted from this report. Instead, this section focuses on providing
highlights of detailed computations of bio-reactions in electrochemical microchannel flow.

Protein Labeling in a Homogeneous Buffer

To illustrate the stochastic uncertainty quantification methodology, this section describes
protein labeling in a simple homogeneous system. Figure 5 shows the time evolution of the
concentrations of the unlabeled and labeled protein in a homogeneous potassium phosphate
buffer at a pH of 8.25. In this problem, the dye D was assumed to be present in abundance
so that the source term for the labeled protein in equation 31 can be written as

ŵL = kL[U] (71)

The rate constant kL in this reaction is pH dependent, given by the following equation:

kL = k0
L + dLe

−(pH−pH0)2/δ2
pH (72)

The Gaussian dependence of this relationship on pH is based on the shape of the measured
pH-dependence of the rate of production of the high-fluorescence-efficiency species from the
reaction of Naphthalene-2,3-dicarboxaldehyde (NDA) with amino acids in the presence of
CN− [30]. The following parameters were used in this expression: k0

L = 0.25 × 10−3 s−1,
dL = 2.15 s−1, pH0 = 9.25, and δpH = 0.85. Both proteins U and L, as well as the dye D
were assumed to have no charge, and therefore the buffer equilibrium and pH did not change
with time. For this simulation, a standard deviation of 1% was assumed for all parameters
in the rate expression (72), as well as for the electrolyte dissociation constants. Third order
PC expansions were used.

The resulting uncertainty in the protein concentrations is indicated in Fig. 5 with “error
bars” that span the ±3σ range, where σ indicates the standard deviation. Clearly, uncer-
tainty in the input parameters causes large uncertainties in the simulated concentrations.
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Figure 5: Time evolution of U and L concentrations in a homogeneous protein labeling
reaction. The uncertainty in these concentrations, due to a 1 % uncertainty in the labeling
reaction rate parameters, is indicated by ±3σ “error bars”.

At the point where [U] = 0.5, a standard deviation of 1% in the parameter pH0 is magnified
about 16 times in the standard deviation of [U].

Note that after about 3 seconds, the range of the ±3σ “error bars” becomes so large that
it seems to include concentrations for U that are negative, which is clearly not physically
possible. However, the interval ±3σ around the mean value properly represents the full
range of possibilities for a certain variable only when its probability density function is
Gaussian, and therefore symmetric. Figure 6 shows the probability density function of [U],
generated from its PC expansion at various points in time. When the mean value of [U] is
sufficiently far away from zero, this PDF has a Gaussian shape. However, for mean values of
[U] closer to zero, the PDF becomes narrower and more skewed. This predicted uncertainty
properly reflects the physical system behavior where all unlabeled protein reacts away, but
its concentration can not be negative.

Parametric Uncertainty in 2D Electro-osmotic Microchannel Flow

This section presents some results of a study of parametric uncertainty in electro-osmotic
microchannel flow [31]. Figure 7 shows the geometry considered for these test problems,
consisting of a rectangular microchannel in which a protein U and dye D react to form a
labeled protein L. An external electrostatic potential is applied across the system to generate
an electroosmotic flow in the x-direction. The unlabeled protein U has a charge of +1 versus
a charge of -1 for the dye D, so electrophoresis will move U forward and D backward, relative
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Figure 6: PDF of the unlabeled protein concentration at different mean values. As the
unlabeled protein reacts away, its PDF becomes narrower and more skewed.

to the bulk flow. An aqueous potassium phosphate (KH2PO4) buffer solution is considered.
Therefore, the species in the solution are the proteins U and L, the dye D, the electrolytes
H+, OH−, K+ as well as the components of phosporic acid H3PO4, H2PO−

4 , HPO2−
4 , and

PO3−
4 .
The proteins in this solution are assumed to have a fixed charge and can therefore be

integrated with equation (31) with a chemical reaction source term ŵi according to a model
irreversible labeling reaction

U + D
kL−→ L (73)

As before, the rate constant was modeled by equation (72), but with the following parame-
ters: k0

L = 0.25× 106 mol−1.l.s−1, dL = 2.15× 106 mol−1.l.s−1, pH0 = 7.40, and δpH = 0.85.
The chemical source terms used in equation (31) are correspondingly

ŵU = ŵD = −ŵL = −kL[U][D] (74)

The concentration of the K+ ion, which is fully dissociated and is a conserved quantity
can also be integrated by equation (31) directly (without a source term). Phosphoric acid,
however, is a weak acid and will dissociate according to the following electrolyte reactions

H3PO4
K1←→ H+ + H2PO−

4 (75)

H2PO−
4

K2←→ H+ + HPO2−
4 (76)

HPO2−
4

K3←→ H+ + PO3−
4 (77)
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Figure 7: A plug of protein U and dye D are introduced in a rectangular microchannel and
react to form a labeled protein L.

where the Ki are the corresponding dissociation constants. An equilibrium formulation is
used for these fast electrolyte reactions. Therefore, we consider the total concentration of
this weak acid

θa = [H3PO4] + [H2PO−
4 ] + [HPO2−

4 ] + [PO3−
4 ] (78)

whose transport equation is obtained similarly to equation (36) by adding up the transport
equations for all the components in θa so the dissociation reaction source terms disappear.
The concentrations of the individual components of θa are then calculated as ci = αiθa, where
the αi are calculated from the equilibrium expressions for the dissociation reactions (75-77)
and can be written as a function of [H+] and the dissociation constants only:

αH3PO4
=

[H+]3

[H+]3 +K1[H+]2 +K1K2[H+] +K1K2K3

(79)

αH2PO−

4
=

K1[H
+]2

[H+]3 +K1[H+]2 +K1K2[H+] +K1K2K3
(80)

αHPO2−
4

=
K1K2[H

+]

[H+]3 +K1[H+]2 +K1K2[H+] +K1K2K3

(81)

αPO3−
4

=
K1K2K3

[H+]3 +K1[H+]2 +K1K2[H+] +K1K2K3
(82)

Equation (30) is used to model the dependence of the zeta potential on pH and buffer
molarity. The concentration of the fully dissociated potassium ion, [K+], is used for the local
buffer molarityM along the walls. The temperature is assumed constant in this work, with
all species properties and reaction rate constants evaluated at 298 K.

All parameters and field variables, were represented with third order polynomial chaos
expansions. The highest order stochastic modes in the expansions of the predicted field
variables were significantly lower than the lower order modes, indicating that the third order
expansions were sufficiently accurate.
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Referring to Fig. 7, a microchannel was considered with a length Lx = 1 cm and a
height Ly = 1 mm. The potassium phosphate buffer solution was initialized with a uniform
concentration of 10−3 mol/l and a pH of 7.25. The Gaussian profiles for the initial U and D
concentrations had peak concentrations of 10−4 mol/l, located at x = 2.5 mm and x = 4 mm
respectively, and a width in x of 0.75 mm. A fixed charge of +1 was assumed for the
unlabeled protein U and a charge of -1 for the dye D, resulting in a neutral labeled protein
L. The electrostatic potential difference ∆V across the domain was set to 1000 V, giving an
average field strength of 1 kV/cm. An uncertainty of 1 % was assumed in the mobility of U,
in the labeling rate parameter pH0, the dissociation constant K2, and the potential difference
∆V . Third order polynomial chaos expansions were used in the computations with a total
of 35 stochastic modes. The time step was set to 2× 10−4 s and the domain was discretized
with 512× 32 cells in x and y.

Figure 8 shows a contour plot of the mean concentrations of the proteins and dye at
t = 0.12 s. At this point in time, the plugs of U and D have just met at x ≈ 4 mm, and
labeled protein is generated at the interface. Note that the labeling reaction is fast compared

U

D

L

Figure 8: Mean concentrations of proteins U, L, and dye D at t = 0.12 s. U and D just
met and L is produced at their interface. The values of the contour levels go linearly from
0 (blue) to 1.3× 10−4 mol/l (red). In this figure, as well as in all subsequent contour plots,
the full physical domain is shown, from 0 to 1 cm in x and from 0 to 1 mm in y.

to the electroosmotic and electrophoretic transport. Consequently, U and D react as soon as
they meet, resulting in almost no overlap between the U and D profiles, and a sharp profile
for L. Since L is neutral, it travels with the bulk convective velocity, which is the average of
the total convective velocities of U and D. Therefore the peak value of L is always located at
the interface of U and D, and since L is generated in that same area, its peak concentration
will keep increasing. At t = 0.12 s, the peak concentration for L is 1.3× 10−4 mol/l, which
is already higher than the peak concentrations of 9.4× 10−5 mol/l for U and D.

The standard deviations in the concentrations of Fig. 8 are given in Fig. 9. The highest
uncertainties appear in the reaction zone at the interface between U and D, with a maximum
coefficient of variation of about 20 % in the L concentration. Even though Fig. 9 only shows
the overall uncertainty in the concentrations, a strong feature of the PC formalism is that
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Figure 9: Standard deviation of the protein and dye concentrations at t = 0.12 s. The
values of the contour levels go linearly from 0 (blue) to 1.1× 10−5 mol/l (red). The largest
uncertainties are found in the reaction zone.

the contributions of the uncertainty in individual parameters to this overall uncertainty can
easily be retrieved, as explained in [31]. Figure 10, for example, shows the contributions from
each of the 4 uncertain input parameters to the standard deviation of the L concentration, in
the area around the reaction zone, at y = 0.5 mm. The total standard deviation of [L] is given
by the curve labeled “all” in this figure. This overall standard deviation has a profile with
a double peak, which for a single peak mean species profile, is characteristic of uncertainty
caused by the convection velocity. When a single peak species profile is transported by an
uncertain convection velocity, the uncertainty in the position of the peak at a given point in
time will cause the most variability at the sides of the peak, where the profile has a steep
slope in the x-direction. At the top of the profile, there is no concentration gradient and
uncertainties in peak position cause little uncertainty in the observed concentrations at that
location.

As indicated by the curve labeled “∆V ”, the uncertainty in the applied electrostatic field
potential has the most dominant contribution to the overall standard deviation. Since both
the electroosmotic and electrophoretic velocities are directly proportional to ∆V , the uncer-
tainty caused by this parameter naturally shows a double peak, characteristic of convection
velocity uncertainty. Similarly, the parameter βU affects the electrophoretic transport of the
reactant U and its resulting contribution to the standard deviation of [L] also has a double
peak, albeit smaller than the ∆V contribution.

The contribution of parameter pH0 also shows a double peak, but with its center located
on the left side of the [L] profile, where the gradient of [L] in x is very steep. The steepness
of the [L] profile in that area is largely determined by the speed of the labeling reaction
compared to the convection speed, with a faster reaction rate leading to a sharper increase
in [L]. With the pH in this area between 7.0 and 7.1 (not shown), equation (72) predicts
significant variability in kL for changes in pH0. So the uncertainty in pH0 mainly affects the
slope of the [L] profile on the left side, consistent with the observed contribution of parameter
pH0 in Fig. 10.
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Figure 10: Major contributions of individual input parameters to the overall standard devi-
ation in [L] in the area around the reaction zone at t = 0.12 s, y = 0.5 mm. The uncertainty
in the applied voltage potential “∆V ” has the most dominant contribution to the overall
standard deviation in [L].

Figure 10 further shows more minor contributions, from the dissociation parameter K2

and from the coupled terms. Even though their contribution is small in this case, those
coupled terms are interesting from a theoretical point of view, as they represent coupled
effects of independent parameters. In the current figure, those terms represent the sum of
three different coupled effects: the coupled effect of ∆V and βU , of ∆V and pH0, and of ∆V
and K2.

As time goes on and the U and D plugs cross each other, nearly all U and D are consumed
in the labeling reaction. At t = 0.50 s, only labeled protein L remains, with its mean
concentration and standard deviation as shown in Fig. 11. The maximum mean concentration
of L at this point in time is 2.4 × 10−4 mol/l in the center of the channel, and about
3.2× 10−4 mol/l near the walls. So the L concentration is up to three times as large as the
initial U and D concentrations. The standard deviation in L, as shown in the bottom plot of
Fig. 11, is very large near the wall, with maximum values up to 10−4 mol/l and coefficients
of variation up to 100 %. Again, the standard deviation in [L] exhibits the double peak near
the centerline, which is characteristic of uncertainty caused by the convection velocity.

What is particularly significant though, is the major distortion of the L plug, as opposed
to the straight profile observed at early times. This distortion is caused by the disturbance of
the buffer electrolyte, in response to the movement and annihilation of the charged protein
U and the dye D. To explain why this is physically happening, consider Fig. 12, which shows
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Figure 11: Mean (top) and standard deviation (bottom) of the labeled protein concentration
L at t = 0.50 s. The initially flat profiles are now severely distorted. The values of the
contour levels go linearly from 0 (blue) to 3.2× 10−4 mol/l (red) in the top plot and from 0
(blue) to 10−4 mol/l (red) in the bottom plot.

the mean and standard deviation of the electrical conductivity σ of the electrolyte solution
at t = 0.50 s. Because two charged molecules are used up for every new labeled protein,

Figure 12: Mean (top) and standard deviation (bottom) of the electrical conductivity of the
electrolyte solution at t = 0.50 s. Annihilation of ions in the labeling reaction results in a
significantly lower mean electrical conductivity near the L plug. The values of the contour
levels go linearly from 7.1 × 10−3 S/m (blue) to 1.3 × 10−2 S/m (red) in the top plot and
from 0 (blue) to 1.5× 10−3 S/m (red) in the bottom plot.

the area around the L plug has a reduced concentration of ions, with a mean electrical
conductivity of almost a third lower than in the undisturbed buffer. Upstream of the L plug,
the electrical conductivity shows some smaller fluctuations, which stem from shifts in the
buffer equilibrium. Since the buffer ions are primarily negatively charged, those disturbances
travel slower than the labeled protein plug. The bottom plot of Fig. 12 shows that the highest
uncertainties in the electrical conductivity are found around the L plug, near the center and
especially at the walls.

The large spatial variations in the electrical conductivity in turn cause non-uniformities
in the electrical field strength, as shown in Figs. 13 and 14. Near the L plug, the mean
electrostatic field strength in the x-direction reaches a value up to 40 % higher than in the
undisturbed flow. This increase strongly affects the local electroosmotic and electrophoretic
velocities, causing an increased wall velocity, leading to the observed distortion of the L
plug. The largest uncertainties are again found near the L plug, with maxima up to 10 %.
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Figure 13: Mean (top) and standard deviation (bottom) of the electrical field strength in the
x-direction at t = 0.50 s. Near the L plug, the mean streamwise electrical field strength is
about 40 % higher than in the undisturbed flow. The values of the contour levels go linearly
from 91.4 kV/m (blue) to 146 kV/m (red) in the top plot and from 0.20 kV/m (blue) to
13 kV/m (red) in the bottom plot.

Even though the initial field strength in the y-direction was zero, Fig. 14 shows that this
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y

Figure 14: Mean (top) and standard deviation (bottom) of the electrical field strength in
the y-direction at t = 0.50 s. The magnitude of the mean of this field strength is up to 15 %
of the initial field strength in the x-direction. The values of the contour levels go linearly
from −16.3 kV/m (blue) to 16.3 kV/m (red) in the top plot and from 0 (blue) to 5.8 kV/m
(red) in the bottom plot.

y-component is quite significant at t = 0.50 s. The magnitude of this field strength is up to
15 % of the initial, streamwise electrostatic field strength for the mean value. Even though
this y-component does not affect the electroosmotic flow velocity directly, it does provide
electrophoretic ion transport in the wall-normal direction, which can further distort sample
profiles.

As indicated by equation (29), the electroosmotic wall velocity depends on both the local
electrostatic field strength and ζ potential, which in turn depends on the pH and the buffer
molarity, as modeled by equation (30). Since all these variables are disturbed by the charged
protein movement and annihilation, the electroosmotic wall velocity varies in the streamwise
direction. These wall velocity changes in turn cause pressure gradients and local recirculation
zones, as indicated by the velocity fields in Figs. 15 and 16. Figure 15 shows the streamwise
velocity field, which has a mean wall velocity that is up to 20 % higher near the L plug.
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Figure 15: Mean (top) and standard deviation (bottom) of the streamwise velocity at t =
0.50 s. The local increase in the electroosmotic wall velocity leads to recirculation zones near
the L plug. The largest uncertainties are found near the wall. The values of the contour levels
go linearly from 6.8 mm/s (blue) to 9.1 mm/s (red) in the top plot and from 5.6×10−3 mm/s
(blue) to 0.59 mm/s (red) in the bottom plot.
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Figure 16: Mean (top) and standard deviation (bottom) of the wall-normal velocity at
t = 0.50 s. The mean of this velocity has a magnitude of up to 6 % of the initial streamwise
velocity. The values of the contour levels go linearly from −0.56 mm/s (blue) to 0.56 mm/s
(red) in the top plot and from 0 (blue) to 0.26 mm/s (red) in the bottom plot.

The wall-normal velocity field shows positive and negative velocities near the L plug, with
magnitudes up to 6 % of the initial streamwise velocity.

Clearly, the recirculation zones in the flow field will distort initially flat sample profiles.
This increases the hydrodynamic dispersion, on top of the electrokinetic dispersion caused
by non-uniformities in the electrophoretic transport.

Sample Dispersion in Electro-osmotic Microchannel Flow with Random Zeta

Potential Variability

The previous section showed an example of parametric uncertainty in model input param-
eters, and the subsequent uncertainty in the model results. In this section, an example is
given where the uncertainty does not stem from a few input parameters but from inherent
variability in the boundary conditions along the walls of the microchannel. For example,
non-uniformities in the wall material, wall roughness from the channel etching process, or
wall fouling by protein deposition can all lead to variabilities in the wall ζ-potential. This
variability can be modeled as a random process and represented with a Karhunen-Loève
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a)

b)

Figure 17: Overlay of the mean a) and Standard Deviation b) of the labeled protein con-
centration [L] at times t = 0.24 s and t = 0.72 s. The profiles spread out as they move
downstream (to the right), especially along the top wall, which has the non-uniform ζ-
potential. The maximum value for the mean of [L] is 1.5 × 10−6 mol/l and the maximum
standard deviation is 5.4× 10−7 mol/l.

expansion [29, 32, 33].
Referring to Fig. 7, a two-dimensional flow is assumed in a channel with length Lx = 1 cm

and depth Ly = 100 µm. The channel was initialized with an aqueous potassium phosphate
buffer solution at a concentration of 10−3 mol/l and a pH of 7.25. At time zero, a plug
of unlabeled protein U2+ was introduced as well as a plug of dye D2−, at x = 0.2 cm
and x = 0.4 cm respectively. Both plugs were Gaussian with a maximum concentration
of 10−5 mol/l. An external electrostatic potential of 1 kV is applied across the system
to generate electroosmotic flow in the x-direction. Given the charge number difference,
electrophoresis will cause the U2+ plug to cross with the D2− plug. As the protein and dye
mix, they react according to a model irreversible labeling reaction

U2+ + D2− kL−→ L (83)

to form a neutral labeled protein L.
Along the bottom wall of the channel, the ζ-potential exhibits no random variability,

i.e. it is solely given by Eq.( 30). However, along the top wall, a random variability was
assumed in the ζ-potential, with a coefficient of variation of 10 % and a correlation length
of 50 Ly. A PC representation for this random variability was obtained using a Karhunen-
Loève expansion with 4 stochastic modes (see Eq. (1)). All parameters and field variables,
were represented with third order polynomial chaos expansions.

Figure 17 shows both the mean value and the standard deviation in the concentration
of the labeled protein L, at two points in time. At time t = 0.24 s, the U and D bands
have just crossed and the labeling reaction is finished. At this point in time, the L band in
Fig. 17a has a maximum concentration of 1.5 × 10−6 mol/l. As the labeled protein moves
downstream, molecular diffusion and dispersion spread the L profile, as is clearly visible at
t = 0.72 s. The standard deviation in the labeled protein concentration, shown in Fig. 17b,
reflects the uncertainty in L due to the random variability in the ζ-potential. Analyte
dispersion in this case is due to both electrokinetic and hydrodynamic dispersion, as can
be explained with the help of Fig. 18. Figure 18a shows the electrical conductivity, which
varies in the channel due to the disturbance of the potassium phosphate buffer equilibrium
as ions move through the channel and are depleted through the protein labeling reaction (the
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a)

b)

c)

d)

Figure 18: Filled contour plots of several fields at time t = 0.72 s. a) Mean electrical
conductivity, ranging from 0.0121 to 0.0124 S/m; b) Mean electrostatic field strength in
x, ranging from 991 to 1011 V/cm; c) Mean streamwise velocity field, ranging from 7.4 to
7.6 mm/s; d) Standard deviation in streamwise velocity field, ranging from 0 to 0.7 mm/s

generation of one L molecule removes two ions from the solution). The electrostatic field
strength, as shown in Fig. 18b, varies accordingly, which causes non-uniform electrophoretic
forces on charged analyte profiles. The resulting differences in the propagation speeds of the
leading and trailing edges of a charged analyte plug can lead to electrokinetic dispersion.
However, while this mechanism affects the unlabeled protein and dye bands in the solution
(not shown), it does not affect the labeled protein in this specific case, as L is neutral. The
non-uniformities in the electrostatic field strength do affect the electroosmotic wall velocity,
given by Eqn. (29), and therefore disturb the bulk velocity field, as shown in Figs. 18c and d.
The mean value of the electroosmotic wall velocity is affected primarily by the electrostatic
field strength, but also by the buffer pH, buffer molarity, and wall effects through the ζ-
potential. Variations in this wall velocity create local accelerations and decelerations with
associated pressure gradients in the flow to maintain conservation of mass, as illustrated
schematically in Fig. 19. This figure shows an analyte plug traveling through a channel
with a non-uniform electrostatic field strength. Pressure gradients upstream of the high field
strength area have given the plug a parabolic profile. As the plug travels through the high
field strength area, the edges near the wall are accelerated, resulting in a distorted analyte
plug. Molecular diffusion in the cross-stream direction smoothens out this distortion, but
generates a wider analyte plug, which is the well-known mechanism behind hydrodynamic
dispersion. The uncertainty in the streamwise velocity field is primarily caused by the
variability in the ζ-potential due to wall effects. The maximum standard deviation of 10 %
near the top wall, as shown in Fig. 18d, is consistent with the magnitude of this random
ζ-potential variability.

The variability in the ζ-potential clearly is a significant contributor to hydrodynamic
disperion. To study this in more details, a set of cases was ran to investigate the sensitivity
of the hydrodynamic dispersion with respect to the statistics of the ζ-potential variability
for a system with only neutral, non-reacting analytes. As neutral analytes do not perturb
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Figure 19: Effect of non-uniform electrostatic field strength on hydrodynamic dispersion of an
analyte plug. A local increase of the electroosmotic wall velocity creates local accelerations in
the flow that induce pressure gradients elsewhere in the channel. The resulting non-uniform
velocity profile distorts the analyte plugs and increases dispersion.

the buffer, those cases had a uniform buffer and electric field strength, so that electrokinetic
dispersion was absent. Each time, a random ζ-potential variability was identically imposed
on both fully correlated walls, with various choices for the coefficient of variation (COV) and
the correlation length LC . Unless otherwise noted, eight modes were used in the Karhunen-
Loève expansion with a 2nd order PC expansion for the parameter and field variables. As
suggested by the convergence analysis, eight modes can be sufficiently accurate provided the
ζ-potential variability has a relatively long correlation length. The channel size for these
cases was 1 cm long by 100 µm deep.

Figure 20 depicts the behavior of the sample dispersion and the corresponding effective
diffusive coefficients for various COV’s ranging from 10 to 30%. The correlation length for
these cases was set to 50Ly. As the COV increases, the sample dispersion drastically in-
creases. In fact, Fig. 21 suggests that the mean square width increases almost quadratically
with the COV. Although the proteins of interest are characterized by a low diffusion coeffi-
cient (Dmolecular = 6.19 ∗ 10−10m2/sec) leading to minimal dispersion under ideal situations,
the effective diffusion coefficient due to random ζ-potential variability can be up to 2 orders
of magnitude higher than the corresponding molecular diffusion.

The role of the ζ-potential scale of fluctuation is illustrated in Figure 22. The COV in
these cases was held constant at 10 % and only the corrrelation length was varied. For the
present conditions, the analyte dispersion is more significant in the case of high frequency
fluctuations.

A clear interpretation of this trend can be drawn by observing the standard deviation
profile of the streamwise velocity u shown in Fig. 23. The results indicate that the velocity
gradient across the channel is more pronounced in the case of low correlation length. Zones
of the sample plug at different locations across the channel will move with higher differential
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bulk velocity leading to a higher dispersion. This has been further quantified in terms of the
L2 norm of the velocity gradient:

L2
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The monotonic increase of the effective dispersion coefficient with the above term is plotted
in Fig. 24.

Note that Figs. 20 and 22 both show < δ2 >, which is the mean of the width squared
of the U profile, over all possible ζ-potential realizations. Beyond this mean behavior of
the U profile, the stochastic methodology also gives full statistical information about this
concentration profile. Figure 25 for example show the probability density functions for the
location and the width (squared) respectively of the U profile at t = 0.45 s for the case with
LC = 25Ly and COV = 0.10. The rather sharp lower bound in the PDF for δ2 corresponds to
the situation of uniform ζ-potential, in which all band spreading is due to molecular diffusion
only. Knowing the expected range for the dispersion allows for reliability assessments of
electrophoretic separation devices that have non-uniform wall surface properties due to, for
example, the microchannel fabrication process, impurities in the wall material or nanoscale
events such as protein deposition at the walls.
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Figure 20: Time evolution of < δ2 > for a random ζ-potential variability with LC = 50
channel depths. Effective diffusion coefficient (scaled by the molecular diffusivity Dmol) for
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Figure 22: Time evolution of < δ2 > for a random ζ-potential variability with COV = 0.10.
Effective diffusion coefficient (scaled by the molecular diffusivity Dmol) for LC = 25: 54,
LC = 50: 47, LC = 100: 32.
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Figure 23: Standard deviation profile of the streamwise standard deviation velocity σu in
cases with LC = 25Ly (dashed) and LC = 100Ly (solid) at x = 3 mm on the left and
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Figure 25: Probability density function for the location (left) and spatial variance δ2 (right)
of the U profile at t = 0.45 in a case with LC = 25Ly and COV = 0.1.
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4 Conclusions

This project has achieved its key objectives. We developed (1) a theoretical formulation
for UQ in an electrochemical microchannel flow, (2) associated numerical algorithms for
solution of the resulting governing equation system, and (3) a C++/F77 code for solving
this system (the initial parallel code target was replaced with more advanced physical model
development involving realistic protein behavior). The construction relies on a specialized
implementation of the chemical species conservation equations that allows handling of both
fast electrolyte buffer chemistry and slow sample chemistry.

The overall construction was demonstrated on relevant model problems involving electro-
chemical microchannel flow, and was used to study band-pass protein-labeling and sample
dispersion in a microchannel. These studies elucidated the amplification of parametric un-
certainties in these flows, and highlighted specific parameters with dominant role in the
uncertainty in model predictions. They also allowed a critical evaluation of the present
global expansions used for UQ, and lead to a significant focus on theoretical developments
of a UQ strategy based on local stochastic expansions.

The work lead to valuable couplings to other DARPA-funded projects on band-crossing
reactions and CAD of microfluid systems. The results of the work were published in technical
journals, and presented in professional meetings.
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• Dr. Olivier P. Le Mâıtre, Visiting Scientist, Department of Mechanical Engineering,
The Johns Hopkins University. Dr. Le Mâıtre is a faculty member at the Centre
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6. O. Le Mâıtre, M.T. Reagan, B. Debusschere, H.N. Najm, R.G. Ghanem & O.M. Knio
(2003) “Natural Convection in a Closed Cavity under Stochastic, Non-Boussinesq Con-
ditions,” submitted to SIAM J. Sci. Comput.

7. B.J. Debusschere, H.N. Najm, P.P. Pebay, O.M. Knio, R.G. Ghanem and O.P. Le
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An uncertainty quantification scheme is developed for the simulation of stochastic
thermofluid processes. The scheme relies on spectral representation of uncertainty
using the polynomial chaos (PC) system. The solver combines a Galerkin procedure
for the determination of PC coefficients with a projection method for efficiently sim-
ulating the resulting system of coupled transport equations. Implementation of the
numerical scheme is illustrated through simulations of natural convection in a 2D
square cavity with stochastic temperature distribution at the cold wall. The properties
of the uncertainty representation scheme are analyzed, and the predictions are con-
trasted with results obtained using a Monte Carlo approach. c© 2002 Elsevier Science (USA)

Key Words: stochastic; natural convection; Navier-Stokes; polynomial chaos;
Karhunen–Loève; uncertainty.

1. INTRODUCTION

Uncertainty propagation and quantification can be an essential step in the development
of complex models, in particular when these models involve inexact knowledge of sys-
tem forcing or system parameters. This article is part of an effort that aims at developing
uncertainty quantification schemes for fluid systems involving transport and chemistry.

As an initial step toward these objectives, a stochastic projection method (SPM) was devel-
oped in a previous work [1]. In [1] attention was focused on an incompressible flow model,
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10 LE MAÎTRE ET AL.

where uncertain model data are generated by a single random variable. SPM combines a
projection method for fluid flow with a spectral representation of the effect of uncertainty
in terms of the polynomial chaos (PC) system [2–9]. The objectives of the present effort
are twofold: (1) to extend the capabilities of SPM to situations involving random processes,
and (2) to generalize the underlying formulation so as to account for weak compressibility
effects. To illustrate the development, we focus on natural convection in an enclosed cavity.
This topic has received considerable attention in the recent literature and various approaches
have been proposed, including models based on the well-known Boussinesq approximation
(e.g., [10–12]) as well as low-Mach-number models (e.g., [13, 14]). In addition, simulations
of internal natural convection have been used as benchmark tests for different flow regimes
[10, 15–27].

In one of its simplest forms, the problem consists of a square or rectangular cavity with
adiabatic horizontal boundaries and differentially but uniformly heated vertical walls. In
practice, however, this idealized situation may be difficult to achieve, for instance due to
imperfections in insulation and/or nonuniform heating and cooling. Computed solutions
are often very sensitive to applied boundary conditions, which can complicate comparison
with experimental measurements [28].

The present effort aims at generalizing the previous construction [1] along two direc-
tions, namely, by considering flows with (small) temperature and density gradients and by
considering uncertain model data associated with a random process. Motivated in part by
the aforementioned observations, we focus on the idealized case of natural convection in a
square cavity under stochastic boundary conditions. As outlined in Section 2, we restrict the
study to natural convection in the Boussinesq limit. A stochastic formulation is then intro-
duced in Section 3 which consists of treating the hot wall as having a uniform temperature
and imposing a stochastic temperature distribution on the cold vertical boundary. The latter
is treated as a Gaussian process characterized by its variance and correlation length. The
Karhunen–Loève expansion [29] is then applied to construct an efficient representation of
this process and to generalize the PC representation used in the previous version of SPM
[1]. A brief validation study of the deterministic prediction is first performed in Section 5
and is used to select an appropriate grid resolution level. The convergence properties of
the spectral stochastic scheme are then analyzed in Section 6, and the properties of the
computed velocity and temperature modes are examined in Section 7. To verify the spectral
computations, a nonintrusive spectral projection (NISP) approach is introduced and applied
in Section 8. The essential idea in NISP is to use deterministic predictions to determine the
stochastic response of the system. Two variants are considered, one based on high-order
Gauss–Hermite (GH) quadrature [30, 31] and the other on Latin hypercube sampling (LHS)
strategy [32]. The predictions of both sampling schemes are contrasted with the spectral
computations and are used to further examine its properties. In Section 9, a quantitative
analysis of the effects of the imposed stochastic temperature profile is provided. Major
conclusions are summarized in Section 10.

2. DETERMINISTIC FORMULATION

We consider a square 2D cavity, of side Le, filled with a Newtonian fluid of density
ρ, molecular viscosity µ, and thermal conductivity κ . The coordinate system is chosen
so that y is the vertical direction, pointing upward, and the x axis is horizontal. The two
horizontal walls are assumed to be adiabatic. The left vertical wall is maintained at uniform
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STOCHASTIC PROJECTION METHOD 11

temperature Th, and the right vertical wall is maintained at Tc. We assume that Th > Tc, so
that the left vertical wall (located at x = 0) is referred to as the hot wall, while the right
vertical wall is the cold wall.

In the Boussinesq limit, 2(Th − Tc)/(Th + Tc) � 1, the normalized governing equations
are expressed as [12]

∂u
∂t

+ u · ∇u = −∇p + Pr√
Ra

∇2u + Pr θ ey, (1)

∇ · u = 0, (2)

∂θ

∂t
+ ∇ · (u θ) = 1√

Ra
∇2θ, (3)

where u is the velocity, t is time, p is pressure, ey is the unit vector in the vertical y direction,
and θ ≡ (T − Tref)/�Tref is the normalized temperature. The reference temperature Tref ≡
(Th + Tc)/2 and the reference temperature difference �Tref ≡ Th − Tc. Unless otherwise
noted, variables are normalized with respect to the appropriate combination of reference
length Le, velocity V , time τ ≡ Le/V , and pressure P = ρV 2. The normalization leads to
the usual definitions of Prandtl and Rayleigh numbers, respectively Pr = µcp/κ and Ra =
ρgβ�TrefL3

e/(µκ), where β is the coefficient of thermal expansion and g is gravitational
acceleration. In all cases, the deterministic system is integrated from an initial state of rest
using Pr = 0.71 and Ra = 106. For this choice of physical parameters, a steady, laminar
recirculating flow regime occurs [12].

3. STOCHASTIC FORMULATION

We consider the effect of “random” fluctuations on the cold wall. The normalized mean
wall temperature at x = 1 is expressed as

θ1(y) ≡ θ(x = 1, y) = θc + θ ′(y) = −1

2
+ θ ′(y). (4)

Using angle brackets to denote expectations, we have 〈θ1〉 = θc; i.e., θ ′ has vanishing
expectation and the mean (dimensional) temperature along the cold wall is independent of
y and equals Tc.

The random component is assumed to be given by a Gaussian process which is charac-
terized by its variance σ 2

θ and an autocorrelation function K given by

K(y1, y2) ≡ K(|y1 − y2|) ≡ 〈θ ′(y1)θ
′(y2)〉 = σ 2

θ exp[−|y1 − y2|/Lc], (5)

where Lc is the normalized correlation length.K can be expanded in terms of its eigenvalues,
λi , and eigenfunctions, fi (y), using [9, 33, 34]

K(y1, y2) =
∞∑

i=0

λi fi (y1) fi (y2), (6)

and θ ′ can be accordingly expressed in the usual Karhunen–Loève (KL) expansion as [29]

θ ′(y) =
∞∑

i=0

√
λi fi (y)ξi , (7)
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12 LE MAÎTRE ET AL.

where the ξi ’s are uncorrelated Gaussian variables having vanishing expectation and unit
variance.

The eigenvalues and eigenfunctions of K are solutions of the corresponding integral
operator [9, 33, 34], ∫ 1

0
K(y1, y2) f (y2) dy2 = λ f (y1). (8)

This Fredholm equation can be solved numerically, but an analytical solution for the kernel
in Eq. (5) is available [9] and is given by

fn(y) =




cos[ωn(y − 1/2)]√
1
2 + sin(ωn)

2ωn

if n is even,

sin[ωn(y − 1/2)]√
1
2 − sin(ωn)

2ωn

if n is odd,

(9)

where

λn = σ 2
θ

2Lc

1 + (ωn Lc)2
, (10)

and ωn are the positive (ordered) roots of the characteristic equation

[1 − Lcω tan(ω/2)][Lcω + tan(ω/2)] = 0. (11)

Since the first positive root of Eq. (11) is ω0 = 0, corresponding to f0 = 0, Eq. (7) may be
rewritten as

θ ′(y) =
∞∑

i=1

ξi

√
λi fi (y). (12)

Figure 1 depicts the first 10 eigenvalues and eigenfunctions for a process with Lc = 1.
Note that as the index increases, the eigenfunctions exhibit higher frequencies while the
corresponding eigenvalues decrease. As discussed in [9] the decay rate of the spectrum
increases with decreasing Lc.
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FIG. 1. Karhunen–Loève expansion for the temperature fluctuation θ ′(y) corresponding to an exponential
correlation function with characteristic length Lc = 1. In the left plot, the first ten mode shapes (

√
λi fi (y)) are

reported. The right plot shows the eigenvalues λi . The quantities have been respectively normalized using σθ

and σ 2
θ . 87
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TABLE I

E2
σ and E∞

σ for Various Values of NKL for Lc = 1/2, 1, and 2

NKL

4 6 10 20 40

E2
σ (NKL) − Lc = 1/2 0.5882E−1 0.3751E−1 0.2161E−1 0.1045E−1 0.5129E−2

E2
σ (NKL) − Lc = 1 0.2947E−1 0.1871E−1 0.1077E−1 0.5213E−2 0.2562E−2

E2
σ (NKL) − Lc = 2 0.1473E−1 0.9337E−2 0.5376E−2 0.2604E−2 0.1280E−2

E∞
σ (NKL) − Lc = 1/2 0.1076E−0 0.6592E−1 0.3453E−1 0.1300E−1 0.5590E−2

E∞
σ (NKL) − Lc = 1 0.5346E−1 0.3255E−1 0.1704E−1 0.6429E−2 0.2792E−2

E∞
σ (NKL) − Lc = 2 0.2657E−1 0.1615E−1 0.8456E−2 0.3197E−2 0.1395E−2

In numerical implementations, the KL expansion [Eq. (12)] is truncated, and the temper-
ature “fluctuation” is approximated as

θ ′ =
NKL∑
i=1

ξi

√
λi fi (y), (13)

where NKL is the number of modes retained in the computations. The error introduced by
this truncation is quantified in terms of the L p norms:

E p
K(NKL) =

[ ∫ 1

0

∫ 1

0

∣∣∣∣∣K(y1, y2) −
NKL∑
i=1

λi fi (y1) f1(y2)

∣∣∣∣∣
p

dy1 dy2

]1/p

, (14)

E p
σ (NKL) =


∫ 1

0

∣∣∣∣∣σθ −
√√√√ NKL∑

i=1

λi f 2
i (y)

∣∣∣∣∣
p

dy




1/p

. (15)

Table I reports E2
σ and E∞

σ for different values of NKL and for Lc = 1/2, 1, and 2; Table II
provides the corresponding values of E2

K and E∞
K . The results indicate that at fixed NKL

the “truncation” errors scale approximately as 1/Lc. At fixed correlation length, E2
σ and

E∞
K decrease as N 1

KL, while E∞
σ and E2

K exhibit faster decay rates. The effect of truncation
of K is further illustrated in Fig. 2, which depicts the truncated correlation function and
its deviation from the exact solution for Lc = 1. The results indicate that the truncation
error is mainly concentrated in a thin band around the axis y1 = y2 and that it exhibits rapid

TABLE II

E2
K and E∞

K for Various Values of NKL for Lc = 1/2, 1, and 2

NKL

4 6 10 20 40

E2
K(NKL) − Lc = 1/2 0.3366E−1 0.1791E−1 0.8176E−2 0.2988E−2 0.1249E−2

E2
K(NKL) − Lc = 1 0.1736E−1 0.9076E−2 0.4107E−2 0.1496E−2 0.6247E−3

E2
K(NKL) − Lc = 2 0.8789E−2 0.4562E−2 0.2057E−2 0.7882E−3 0.3124E−3

E∞
K (NKL) − Lc = 1/2 0.2188E−0 0.1439E−0 0.8462E−1 0.4149E−1 0.2051E−1

E∞
K (NKL) − Lc = 1 0.1127E−0 0.7285E−1 0.4250E−1 0.2076E−1 0.1026E−1

E∞
K (NKL) − Lc = 2 0.5699E−1 0.3660E−1 0.2128E−1 0.1039E−1 0.5130E−2
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FIG. 2. Truncated correlation function K(y1, y2) (left) and its deviation from the exact value (right). An
exponential autocorrelation function is used with Lc = 1. The truncation is at NKL = 6.

oscillatory decay as one moves away from the axis. It thus appears that the truncation, which
removes the highest frequency modes, primarily affects the short-scale correlations. The
truncated modes are expected to have a weak influence on the solution and this is in fact
reflected in the analysis that follows, which indicates that a modest number of KL modes
is generally sufficient.

4. SPECTRAL STOCHASTIC REPRESENTATION

As in [1], the dependence of the solution on the uncertain model data is represented in
terms of the PC system. We illustrate this representation for generic field variable, �(x, t, ξ),
where ξ = ξ1, . . . , ξNKL .� is decomposed according to

�(x, t, ξ) =
P∑

i=0

�i (x, t)
i (ξ), (16)

where �i are (yet to be determined) deterministic “coefficients,” 
i denote the polynomial
chaos [2, 3, 29], while P + 1 is the total number of modes used in the spectral expan-
sion. Note that the 
i are multidimensional orthogonal polynomials of the uncorrelated
Gaussians, and that for i = 1, . . . , NKL, 
i (ξ) = ξi ; i.e., these NKL polynomials are linear
in the ξi . General expressions for 
i , including higher order terms, can be found in [9].

We rely on Eq. (16) to form representations of the stochastic velocity, pressure, and
temperature distributions. Governing equations for the unknown expansion coefficients are
obtained by inserting the expansion into the governing equations and using a Galerkin
approach that takes advantage of the orthogonality of the polynomial chaoses [1, 9]. This
results in the coupled system

∂uk

∂t
+ (u · ∇u)k = −∇pk + Pr√

Ra
∇2uk + Pr θk ey, (17)

∇ · uk = 0, (18)

∂θk

∂t
+ ∇ · (uθ)k = 1√

Ra
∇2θk, (19)
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STOCHASTIC PROJECTION METHOD 15

for k = 0, . . . , P . Here, uk(x, t), pk(x, t), and θk(x, t) are the coefficients in the PC expan-
sion of the normalized velocity, pressure, and temperature fields, respectively. The quadratic
velocity–velocity and velocity–temperature products are given by

(u · ∇u)k =
P∑

i=0

P∑
j=0

Ci jkui∇u j (20)

and

(uθ)k =
P∑

i=0

P∑
j=0

Ci jkuiθ j , (21)

where

Ci jk ≡ 〈
i
 j
k〉〈

2

k

〉 . (22)

Note that although Ci jk = 0 for 1 ≤ i, j, k ≤ NKL, it is generally nonvanishing, so that the
Galerkin procedure results in a coupled system for the velocity and temperature modes.
Note, however, that the velocity divergence constraints are decoupled, which enables us to
adapt the SPM developed in [1]. This approach is outlined in the following sections.

4.1. Boundary Conditions

Following [1], boundary conditions are treated in a “weak sense”; i.e., the Galerkin
approach is also applied at the boundaries. In particular, the PC decomposition is also
introduced into the corresponding expressions, and orthogonal projections are used to derive
boundary conditions for the velocity and temperature modes. For the setup outlined in
Section 3, we obtain

uk = 0, k = 0, . . . , P ∀x ∈ ∂�, (23)

∂θk

∂y
= 0, k = 0, . . . , P for y = 0 and y = 1, (24)

θ0(x = 0, y) = 1

2
, θ0(x = 1, y) = −1

2
, (25)

θk(x = 0, y) = 0, θk(x = 1, y) = √
λk fk(y) for k = 1, . . . , NKL, (26)

θk(x = 0, y) = θk(x = 1, y) = 0 for k > NKL. (27)

Here � = [0, 1] × [0, 1] denotes the computational domain, and ∂� is its boundary.

4.2. Solution Method

As mentioned earlier, the solution scheme is an adapted version of the SPM introduced
in [1]. Numerical integration of the governing equations of the stochastic mode follows an
explicit fractional step procedure that is based on first advancing the velocity and temperature
modes using

ũk = 4un
k − un−1

k

3
+ 2�t

3

[
−2(u · ∇u)n

k + (u · ∇u)n−1
k + Pr√

Ra
∇2un

k + Pr θn
k ey

]
, (28)

θn+1
k = 4θn

k − θn−1
k

3
+ 2�t

3

[
∇ · (−2(uθ)n

k + (uθ)n−1
k

) + 1√
Ra

∇2θn
k

]
, (29)
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where superscripts refer to the time level and �t is the time step. Note that since we are
primarily interested in the steady-state solution of this system, we have combined explicit
second-order time discretization of the convective terms and with first-order discretization
of the buoyancy and viscous terms. As in [1], spatial derivatives are approximated using
second-order centered differences. In the second fractional step, the “intermediate” velocity
modes ũk are updated so as to satisfy the divergence constraints [35, 36]; we use

un+1
k = ũk − 2�t

3
∇pn+1

k , (30)

where pk are solutions to the Poisson equations

∇2pn+1
k = 3

2�t
∇ · ũk (31)

with homogeneous Neumann conditions [35, 36]. Note that these elliptic systems for the
various modes are decoupled, a key feature in the efficiency of SPM [1].

In the implementations presented in the following, we relied on a conservative second-
order finite-difference discretization on a uniform Cartesian mesh with (Nx , Ny) cells in
the x and y directions respectively. A direct, Fourier-based, fast Poisson solver is used to
invert Eqs. (31). Since these inversions account for the bulk of the CPU times, and since
systems for individual modes are decoupled, the computational cost scales essentially as
O(N log N ), where N ≡ Nx × Ny × (P + 1). This estimate is in fact reflected in the tests
that follow.

5. DETERMINISTIC PREDICTION

We start with a brief discussion of deterministic predictions, obtained by setting the order
(NO) of the PC expansion to zero. In this case, the stochastic boundary conditions reduce to
those of the classical problem with uniform hot and cold wall temperatures, θh = 1/2 and
θc = −1/2. The resulting predictions are used to validate the computations and to select a

FIG. 3. Scaled temperature field (left) and velocity vectors (right) for the deterministic temperature boundary
conditions (θh = −θc = 1/2) computed using zero-order spectral expansion (NO = 0).
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suitable grid size. To this end, the results are compared with the spectral computations of
Le Quéré [12]. For Ra = 106, Le Quéré found a steady Nusselt number Nu = 8.8252, with
the Nusselt number defined by

Nu ≡ −
∫ 1

0

∂θ

∂x
dy. (32)

Following a systematic grid refinement study, we find that a computational grid with
Nx = 140 and Ny = 100 is sufficient for accurate predictions. Starting from an initial state
of rest, the computations are carried out until steady conditions are reached. Specifically,
the computations are stopped when the maximum change in any field quantity falls below a
tolerance ε = 10−10. (Double precision arithmetic is used.) For the current grid resolution,
the steady Nusselt number is found to be Nu = 8.8810, which is within 0.63% of the
prediction of Le Quéré. The structure of the steady field, depicted in Fig. 3, reveals thermal
boundary layers on the hot and cold walls and a clockwise circulation of the fluid; these
predictions are also in good agreement with the results reported in [12].

6. CONVERGENCE ANALYSIS

An analysis of the convergence of the spectral representation scheme is performed in this
section. Following the previous discussion, we are presently dealing with a two-parameter
discretization that involves the number NKL of Karhunen–Loève modes, as well as the order
NO of the PC expansion. As discussed in [9], the total number P of orthogonal polynomials
increases monotonically with NKL and NO [9].

6.1. Convergence of KL Expansion

In Section 3, we observed that the KL expansion converged rapidly and consequently
speculated that truncation of this expansion would have little effect on the predictions. We
now examine this expected trend by computing the mean Nusselt number,

Nu = −
∫ 1

0

∂θ0

∂x
dy, (33)

and its standard deviation,

σ(Nu) =
(

P∑
i=1

{[
−

∫ 1

0

∂θi

∂x
dy

]2

〈
i
i 〉
})1/2

, (34)

for NKL ranging from 2 to 10. For brevity, we restrict our attention to a first-order PC
expansion, and results are obtained with fixed Lc = 1 and σθ = 0.25.

The average of the local heat flux variance along the wall is given by

σ 2(∂θ/∂x) =
∫ 1

0

P∑
i=1

[
∂θi

∂x

]2

〈
i
i 〉 dy. (35)

and should be carefully distinguished from σ 2(Nu). At steady state, the net heat flux on the
hot wall equals that on the cold wall; since this relationship holds for arbitrary realization,
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TABLE III

Effect of NKL on Nu and σ(Nu) for NO = 1,

Lc = 1, and σθ = 0.25

NKL Nu σ(Nu) P

2 8.96344 2.47009 2
4 8.97114 2.46979 4
6 8.97179 2.46980 6
8 8.97190 2.46980 8

10 8.97192 2.46980 10

σ 2(Nu) has the same value on the hot wall as on the cold wall. On the other hand, σ 2(∂θ/∂x)

is expected to assume a higher value on the cold wall, where random fluctuations are
imposed, than on the hot wall, since these fluctuations are expected to be smoothed out by
diffusion.

Computed values of Nu and σ(Nu) are reported in Table III. As expected, the results show
that for the present conditions Nu and σ(Nu) converge rapidly with NKL. To further examine
the predictions, we plot in Fig. 4 the distribution of the normalized heat flux −∂θ/∂x along
the hot and cold walls as a function of P . (Note that for NO = 1, P = NKL.) Clearly, on the
hot wall, only modes 0 and 1 contribute significantly to the local heat flux; for the higher
modes, ∂θi/∂x is close to zero for all y. This situation contrasts with the distribution of the
heat fluxes on the cold wall, where significant heat flux fluctuations are observed for all the
PC modes. However, as noted earlier, the net heat fluxes across the hot and cold walls are
equal at steady state. Thus, when integrated along the boundary, the significant fluctuations
of the higher modes on the cold wall tend to cancel out. This explains the rapid convergence
of integral quantities in Table III.

The standard deviation of the local heat flux, shown in Fig. 5, closely reflects these
trends. In particular, by comparing points symmetrically across the midplane, the re-
sults clearly show that the values on the cold wall are generally larger than those on the
hot wall. Also note that the curve for the cold wall exhibits a noticeable waviness that
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FIG. 4. Local heat fluxes versus y on the hot (left) and cold (right) walls, for modes 0–10. A first-order
expansion is used with NKL = 10, Lc = 1, and σθ = 0.25.
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FIG. 5. Standard deviation of the local heat fluxes versus y on the hot and cold walls. A first-order expansion
is used with NKL = 10, Lc = 1, and σθ = 0.25.

corresponds to the imposed conditions, whereas the curve for the hot-wall distribution is
smooth.

6.2. Convergence of PC Expansion

In this section, we analyze the convergence of the PC expansion by contrasting results
obtained with NO = 1, 2, and 3. Results are obtaining with Lc = 1 and σθ = 0.25, using
both four and six KL modes.

Wall heat transfer. The computed values of Nu and σ(Nu) are reported in Table IV,
together with the number P of polynomials used. The results exhibit a fast convergence as
the order of the PC expansion, NO, increases. The differences in Nu and σ(Nu) between
second- and third-order solutions are less than 0.01% and 0.05%, respectively. The close
quantitative agreement between the results for NO = 2 and 3 indicates that, at least as far as
integral quantities are concerned, a second-order expansion is sufficiently accurate. This fast
convergence rate is also indicative of the smooth dependence of the solution with respect
to the imposed random temperature fluctuations.

Plotted in Fig. 6 are the heat flux distributions along the cold (top row) and hot (bottom
row) walls for NO = 1, 2, and 3. Results are obtained with NKL = 4 and curves are plotted

TABLE IV

Mean Nusselt Number and Its Standard Deviation for First-, Second-, and Third-Order

PC Expansion with NKL = 4 and 6 for Lc = 1 and σθ = 0.25

Nu σ(Nu) P

NO NKL = 4 NKL = 6 NKL = 4 NKL = 6 NKL = 4 NKL = 6

1 8.97114 8.97179 2.46979 2.46980 5 7
2 8.97289 8.97352 2.46323 2.46327 15 27
3 8.97337 8.97340 2.46239 2.46245 34 83
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FIG. 8. Contours of θ 0 − 〈θ NO 〉. Plots are generated for NO = 1, 2, and 3. Results are obtained with NKL = 4,
Lc = 1, and σθ = 0.25.

FIG. 9. Contour plots of 〈θ 1〉 − 〈θ 2〉 (left) and 〈θ 2〉 − 〈θ 3〉 (right). Results are obtained with NKL = 4, Lc = 1,
and σθ = 0.25. 95
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FIG. 10. Contours of standard deviation in temperature for NO = 1, 2, and 3. Results are obtained with
NKL = 4, Lc = 1, and σθ = 0.25.

FIG. 11. Differences in the temperature standard deviation computed using NO = 1, 2, and 3. In all cases,
NKL = 6, Lc = 1, and σθ = 0.25. 96
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FIG. 6. Local heat flux versus y on the cold (top row) and hot (bottom row) walls. Results are obtained with
NKL = 4, Lc = 1, and σθ = 0.25. Curves are plotted for every mode in the PC expansion. P = 4 for NO = 1,
P = 14 for NO = 2, and P = 34 for NO = 3.

for every mode in the PC expansion. The local heat flux profiles for the “first-order modes”
(index i ≤ 4) have shapes similar to those reported in Fig. 4: these modes have significant
amplitude on the cold wall, whereas modes higher than 2 are much less pronounced on the
hot wall. On both walls, the first-order modes are slightly influenced by the order of the PC
expansion. Whereas increasing NO introduces more modes in the expansion (P = 14 for
NO = 2 and P = 33 for NO = 3), the heat fluxes associated with these higher order modes
are very low. Consequently, the “correction” of the local heat fluxes, arising when NO is
increased, is weak whenever NO > 1. This fact is also shown in Fig. 7, where the local
heat-flux standard deviations are plotted for NO = 1, 2, and 3.

The present analysis of wall heat fluxes only shows how the solution converges, globally
or locally, on the vertical boundaries. To further investigate the behavior of the spectral

FIG. 7. Local standard deviation of the heat fluxes on the hot (left) and cold (right) walls, for NO = 1, 2,
and 3. Results are obtained with NKL = 4, Lc = 1, and σθ = 0.25.
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representation, we analyze the temperature and velocity fields within the cavity. We focus
our attention on the distributions of mean quantities and their standard deviations and
postpone to Section 7 the examination of individual mode structure.

Temperature field. We start by noting that, since the natural convection in the cavity
is not a linear process, the mean temperature distribution differs from the deterministic
prediction corresponding to the mean temperature boundary condition, θc = −1/2. This
deterministic prediction, corresponding to ξi = 0, i = 1, . . . , NKL, shall be denoted by θ0.
Meanwhile, we shall denote by 〈θ NO=1,2,3〉 ≡ θ0(NO) the mean predictions obtained using
first-, second-, and third-order PC expansions, respectively.

Examination of the mean temperature fields obtained with NO = 1, 2, and 3 (not shown)
reveals that these fields have features like those of θ0 (shown earlier in Fig. 3). Thus,
we have found it more convenient to analyze the difference fields θ0 − 〈θ NO≥1〉. These
difference fields are plotted in Fig. 8 for NKL = 4. A close agreement is observed between
the plots corresponding to the different expansion orders. Only a very weak dependence of
the local magnitudes on NO can be detected. Thus, increasing NO has only a weak effect
on the expected temperature field. To further demonstrate the convergence of the spectral
representation, the differences 〈θ NO=1〉 − 〈θ NO=2〉 and 〈θ NO=2〉 − 〈θ NO=3〉 are displayed in
Fig. 9. The results show that, at least as far as the mean field is concerned, the first-order
expansion captures most of the effects of uncertainty. The difference 〈θ NO=2〉 − 〈θ NO=3〉 is
very small, indicating that the truncated terms have a weak impact on the mean temperature.

Figure 8 also shows that the mean temperature along the cold wall is higher than that
of θ0. The opposite situation is reported along the hot wall, where the mean temperature
is lowered by the uncertainty. These changes are responsible for the improvement of the
global heat-transfer coefficient Nu. In addition, the mean temperature on the bottom of the
cavity is significantly lower than that of θ0; in the upper part of the cavity, the mean and
deterministic predictions are nearly equal. To explain these trends, one notes that the mean
clockwise flow circulation is not altered by the stochastic boundary conditions (as will be
shown later). So, on average, the fluid is traveling downward along the cold wall, where
it is affected by random temperature conditions. The random fluctuations are transported
across the cavity to the hot wall. As the fluid travels upward along the hot wall, uncertainty
is reduced due to diffusion, so that when reaching the upper part of the cavity, the fluid
temperature has lost most of its uncertainty, and its mean value is close to that of θ0. We
also observe that the deviation of the mean temperature field from θ0 exhibits a complex
structure, with alternating signs, in the lower right quadrant, where the deviation from θ0

peaks. This pattern is closely correlated with the uncertainties in the velocity fields, as will
be further discussed.

Additional insight into the role of stochastic boundary conditions can be gained from
Fig. 10, which depicts the temperature standard deviation fields for NO = 1, 2, and 3. The
results show that the standard deviation distribution has a structure similar to that of the
mean, with two layers parallel to the vertical walls and a horizontal stratified arrangement
from the bottom to the top of the cavity. The standard deviation vanishes on the hot wall,
where deterministic conditions are imposed, and reaches its maximum on the cold wall, with
values close to σθ . This spatial distribution is consistent with the arguments just presented
regarding the role of circulation in driving the uncertainty.

Finally, in Fig. 11, it is shown that the expansions for NO = 1, 2, and 3 provide essentially
the same estimate of the temperature standard deviation, with differences in the fourth
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FIG. 17. Scaled temperature fields θk for k = 0, . . . , 14. Results are obtained with NKL = 4, NO = 2, Lc = 1,
and σθ = 0.25.
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FIG. 19. Scaled temperature fields θk for NKL = 4, obtained using NISP/GH predictions with Nd = 81. Lc = 1,
and σθ = 0.25.
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FIG. 12. (a) Velocity map of the difference 〈uNO=3〉 − u0. (b) Profiles of mean horizontal velocity (〈uNO=3〉)
and mean vertical velocity (〈vNO=3〉). The profiles are independently scaled for clarity. The scaled length of
the bars corresponds to 6 times the local standard deviation. Results are obtained with NKL = 6, Lc = 1, and
σθ = 0.25.

significant digit. These results also demonstrate the fast convergence rate of the spectral
expansion and the fact that in the present case a first-order expansion captures most of the
standard deviation.

Velocity field. As was done for the temperature distribution, we start by examining
the deviation of the mean velocity field from u0, which denotes the deterministic solu-
tion corresponding to the mean temperature condition (θc = −1/2). The mean velocity
fields corresponding to first-, second-, and third-order PC expansions will be denoted by
〈uNO=1,2,3〉, respectively. For each case, we find that the deviation of the mean solution from
u0 is small, and we consequently focus on the differences 〈uNO≥1〉 − u0.
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FIG. 13. Velocity map of the difference 〈uNO=3〉 − 〈uNO=2〉. Results are obtained with NKL = 6, Lc = 1, and
σθ = 0.25.

Figure 12a shows the distribution of 〈uNO=3〉 − u0 for a simulation with NKL = 6, Lc = 1,
and σθ = 0.25. The difference field exhibits three complex structures that lie in the lower
part of the cavity. While these structures resemble the recirculating eddies of the mean
flow, it should be emphasized that the velocity magnitudes have been scaled by a factor
of 10 compared to those in Fig. 3. Thus, with respect to u0, the mean field is significantly
perturbed in the regions occupied by these structures, but it is not actually recirculating.
This can be verified by inspecting the mean solution itself, depicted in Fig. 12b, using
the profiles of mean horizontal and mean vertical velocity. The profiles show that the
mean flow is not recirculating but that flow “reversal,” hence recirculation, in the lower
right corner is likely to occur. In this region, one observes large standard deviations and
low mean velocities, especially outside the boundary layers; this is indicative of large
sensitivity to the stochastic boundary conditions. This trend is consistent with earlier ob-
servations regarding the deviations θ0 − 〈θ NO≥1〉, which exhibited maxima at these same
locations.

To verify that the behavior of the stochastic solution is well represented, and consequently
that the previously mentioned trends are not an artifact of the method, we inspect in Fig. 13
the distribution of 〈uNO=3〉 − 〈uNO=2〉. The velocity map is generated with a scaling factor
that is 10 times larger than that used in Fig. 12a. The results clearly demonstrate that there are
very small differences between the second- and third-order solutions and that both provide
accurate representations of the stochastic process.

Remarks. We close this section with two remarks regarding the ability of the spectral
representation to accurately reproduce individual events and regarding the CPU costs of the
spectral solution scheme.

Recall that the spectral representation relies on a weighted residual procedure to de-
termine the mode coefficients. This representation is the closest polynomial to the exact
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FIG. 14. Velocity map of the difference uNO=2(ξ = 0) − u0. Results are obtained with NKL = 6, Lc = 1, and
σθ = 0.25.

response “surface” in the corresponding L2 norm. Although optimal in this sense, the
PC representation does not guarantee that individual “realizations” are exactly interpo-
lated. However, our experiences indicate that when the PC representation is of sufficiently
high order, it can also be used to obtain highly accurate estimates of individual real-
izations. This quality is illustrated in Fig. 14, where we plot the difference between u0

and the second-order solution evaluated at ξ = 0, i.e., uNO=2(ξ = 0). The figure is gen-
erated with a scaling factor 10 times larger than that used for the deterministic solution
of Fig. 3, demonstrating that the agreement between u0 and uNO=2(ξ = 0) is indeed very
good.

Regarding the performace of the spectral computations, we had anticipated earlier that the
CPU cost would scale linearly with P , with near unity coefficient. As shown in Fig. 15, this
behavior is in fact observed, and, together the spectral behavior of the errors in the spectral
approximation, can be used to guide the selection of a suitable stochastic discretization level
that properly balances accuracy and CPU cost.

7. MODE BEHAVIOR

In this section, we examine individual velocity and temperature modes in PC expansion.
For brevity, we restrict our attention to spectral predictions obtained with NKL = 4, NO = 2,
Lc = 1, and σθ = 0.25. For this spectral resolution P = 14, giving a total of 15 modes. Thus,
we end up with a moderate number of velocity and temperature distributions, which are
analyzed in the following.

7.1. Velocity

Figure 16 provides vector maps for all the modes in the computations. Different scaling
factors are used to represent the various fields, as indicated in the labels. Note that the zeroth
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FIG. 15. CPU time needed to perform 100 time steps for PC expansions with different NO and NKL. A fixed
mesh size of 140 × 100 cells is used. Scaled CPU times are reported as a function of the largest polynomial
index P.

mode corresponds to the mean velocity field, which has been already studied in Section 6.2.
Thus, we shall focus on the higher modes.

The first-order velocity modes vk, k = 1, . . . , 4, follow mode 0 in the first column
of Fig. 16. They correspond to the polynomial 
k = ξk for k = 1, . . . , NKL = 4. Thus,
these modes reflect the linear response of the stochastic velocity field to the correspond-
ing Karhunen–Loève eigenfunctions appearing in Eq. (13) and plotted in Fig. 1. Note
that the first KL mode has a nearly uniform, positive value and that it exhibits a posi-
tive velocity along the cold wall and a negative velocity along the hot wall. This is not
surprising since, for ξ1 > 0, the first Karhunen–Loève mode tends to decrease the tem-
perature difference between the two walls. However, the structure of u1 is not similar to
that of u0. The two fields are governed by different dynamics, as shown in the Appendix,
where the governing equations are given for a first-order PC expansion. One observes
that the first mode is advected (and “stretched”) by the mean velocity (u0) and not by u1.
This observation, which also applies for u2, u3, and u4, remains true for a second-order
expansion.

In the neighborhood of the cold wall, all the first-order velocity modes clearly reflect the
shape of the corresponding Karhunen–Loève mode. For instance, for u2, the velocity points
upward on the highest part of the cold wall and downward in its lowest part, as the associated
temperature perturbation is respectively positive and negative (Fig. 1). For u1 and u2, the
velocity magnitudes are significant near all solid boundaries; on the other hand, for u3 and
u4, the velocity magnitudes are negligible on the hot wall. For the first-order modes, the
velocity magnitudes decrease with increasing mode index; note in particular that the scale
factor for u4 is twice that of u3. If a larger value for NKL is used, the additional first-order
velocity fields are weaker than those retained, being localized near the cold boundary (not
shown). This trend is consistent with our earlier discussion of the weakening effects of the
higher frequency, random fluctuations.

The second-order velocity fields uk, k = 5, . . . , 14, are plotted in the center and right
columns of Fig. 16; the same scaling factor is used for these modes, allowing straightforward
comparison. Note that this scaling factor is 80 times larger than that of u0 and 10 times
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FIG. 16. Velocity fields uk for k = 0, . . . , 14. Results are obtained with NKL = 4, NO = 2, Lc = 1, and
σθ = 0.25. Note that different velocity scales are used, as indicated in the labels.

105



STOCHASTIC PROJECTION METHOD 31

larger than that of u4. Thus, the magnitudes of the second-order velocity fields are much
smaller than those of zeroth- and first-order modes. This rapid decay also reflects the rapid
convergence of the PC expansion.

The second-order velocity modes have very different patterns, some being only significant
along the cold wall and others affecting the entire cavity. Some of these structures can be
easily interpreted. For example. u5, which corresponds to 
5 = ξ 2

1 − 1, has a structure
similar to that of u1. For other modes, the structure of the corresponding velocity fields are
quite complex and difficult to interpret. It is interesting to note, however, that the velocity
fields involving the second KL mode (u6, u9, u10, and u11) seem to have the most significant
magnitudes, suggesting that this mode has greater impact on the stochastic process than the
others. On the other hand, second-order polynomials associated with the fourth KL mode
appear to be very weak.

7.2. Temperature

Figure 17 shows contour plots of the temperature modes θk, k = 0, . . . , 14. Since the
mean temperature field θ0 has been analyzed earlier, we will focus on first- and second-
order modes.

The contours of the first mode, θ1, are similar to those of θ0, even though the corresponding
values differ. This is not surprising since these two modes obey similar boundary conditions,
with θ0 being subjected to a uniform Dirichlet condition on the cold wall, while θ1 is nearly
uniform there. However, some differences between the distributions of θ1 and θ0 can be
observed at the lower right corner of the cavity. These differences appear to be governed
by the circulation of the mean flow in the cavity. To appreciate this effect, we note that it
is the mean field u0 which contributes to the transport of θ1; the heat flux associated with
u1, which points upward near the cold wall, is dependent on the mean temperature field θ0

(see the Appendix). The role of the mean field in the transport of θ2, θ3, and θ4 can also be
appreciated from the corresponding contour plots. Note that θ2, θ3, and θ4 are very small
in the upper half of the cavity but have significant values in the lower part of the cavity
and/or in the vicinity of the cold wall. In particular, for θ3 and θ4 one observes fluctuations
of alternating sign that are localized near the cold boundary and that coincide with the shape
of the corresponding KL mode.

As for velocity, the second-order temperature modes are more difficult to interpret than
the first-order modes. The only structures that can be easily identified are the imposed cold-
wall distributions. The results indicate that significant mode coupling occurs, which can be
detected by inspecting the modes involving mixed products of the ξi ’s. For instance, for θ7 a
second-order coupling between ξ1 and ξ3 is involved; this mode exhibits three distinct zones
along the cold wall, which reflect the shape of the third mode in the KL expansion. Apart
from such identifiable features, the second-order modes can have complex distributions,
some of which are localized in the lower part of the cavity, while others extend throughout
the domain.

Regarding the amplitude of the second-order modes, we note those modes involv-
ing ξ2 and ξ3, i.e., the second and third KL eigenfunctions, are dominant. Thus, not all
second-order modes contribute equally to the stochastic process. In general, however, the
second-order temperature modes are at least one order of magnitude lower than the first-
order modes. This is consistent with earlier observations regarding the convergence of the
expansion.
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8. NONINTRUSIVE SPECTRAL PROJECTION

To verify the spectral computations of the previous section, a NISP approach is developed.
The starting point in NISP is the observation that the modes ui and Ti can be obtained by
projecting deterministic computations onto the PC basis. If ud(ξ) and T d(ξ) denote the
deterministic solution corresponding to a particular realization ξ = (ξ1, . . . , ξNKL ), then the
polynomial coefficients are, by definition, given by

(ui , Ti ) = 〈(u, T )d
i 〉
〈
i
i 〉 ≡

∫ ∞

−∞
dξ1 · · ·

∫ ∞

−∞
dξNKL

[
(u, T )d(ξ)


i (ξ)〈

2

i

〉 NKL∏
k=1

exp
(−ξ 2

k /2
)

√
2π

]
.

(36)

8.1. Gauss–Hermite Quadrature

For moderate values of NKL, our multidimensional integration can be efficiently per-
formed using Gauss–Hermite quadrature [30, 31]. Using n collocation points along each
“stochastic direction,” Eq. (36) can be approximated as

(ui , Ti ) =
n∑

n1=1

. . .

n∑
nNKL =1

(u, T )d
(
xn1 , . . . , xnNKL

)
i
(
xn1 , . . . , xnNKL

)
〈
i
i 〉

NKL∏
k=1

wnk , (37)

where (xk, wk), k = 1, . . . , n, denote the one-dimensional GH integration points and
weights. The quadrature in (37) is exact when the integrand is a polynomial of degree
of 2n − 1 or less. Thus, the coefficients can be exactly estimated if the process is spanned
by polynomials of degree less than or equal to (2n − 1)/2. In this situation, the number
of deterministic realizations Nd required in the NISP approach for given NKL and NO is
Nd = (2NO − 1)NKL . It should be emphasized that for arbitrary NKL and NO, Nd is always
greater than P, the number of polynomials in the spectral approach used here. Since the
CPU time in the spectral approach is approximately P times that of a deterministic solu-
tion, NISP is not as efficient as the spectral approach. Its main advantage, however, is that
it makes use of a deterministic solver without the need for any modifications and so is
“nonintrusive.”

NISP/GH computations are performed for a case with NKL = 4 and NO = 2. We use
n = 3 and so obtain Nd = 81 deterministic realizations for the corresponding GH quadrature
points. (In contrast, the intrusive spectral approach discussed previously has P = 14, for
a total of 15 modes.) Velocity and temperature modes obtained using NISP are plotted
in Figs. 18 and 19, respectively. The corresponding results obtained using the intrusive
spectral approach were given in Figs. 16 and 17 and have extensively discussed in the
previous section.

For the velocity fields, we find an excellent agreement between the intrusive spectral
results (Fig. 16) and the NISP predictions (Fig. 18) for the zeroth- and first-order modes.
For the second-order modes (uk, k = 5, . . . , 14), small deviations are observed between the
two sets, but the primary structure of the modes is quite similar. These small deviations are
pronounced for coupled modes involving ξ2 and ξ3; the deviations are substantially smaller
for the nonmixed quadratic modes. Despite these small deviations, the agreement between
the intrusive and NISP/GH predictions is very satisfactory.
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FIG. 18. Velocity fields uk for NKL = 4, obtained using NISP/GH predictions with Nd = 81. Note that different
scale factors apply on vector magnitudes. Lc = 1 and σθ = 0.25.
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Comparison of the temperature modes in Figs. 19 and 17 reveal trends similar to those
of the velocity modes. In particular, the zeroth- and first-order modes are in excellent
quantitative agreement, as can be appreciated by inspecting the maxima and minima reported
on individual frames. These values also provide a good illustration of the deviations observed
in the second-order modes. Again the largest differences are observed for modes involving
mixed products. The small magnitude of these differences, compared to the characteristic
values of the first-order terms, is evident and should be emphasized.

The origin of deviations between intrusive and NISP/GH predictions can be traced to
the errors inherent in both approaches. These primarily consist of spectral truncation errors
in the intrusive approach and aliasing errors in the NISP predictions. Obviously, complete
agreement between NISP and spectral computations can only be achieved in the case of a
finite spectrum. Since we are presently dealing with second-order spectral representations,
agreement would occur if the third- and higher order modes vanish identically, which is
clearly not the case: the third-order terms are very small, but not identically vanishing.

To further examine these differences, we rely on the L2 norms of the differences between
the same temperature modes in two different solutions, T (1) and T (2), defined according to

E2
ik ≡

[ ∫ ∫ (
T (1)

i − T (2)
k

)2
dx dy

]1/2

. (38)

The indices i and k are selected so that 
i in the PC expansion of T (1) referes to the same
polynomical 
k in the polynomial expansion for T (2). Obviously, i = k when T (1) and T (2)

have the same number of KL modes, NKL.
We have first compared modal solutions obtained with intrusive spectral computations

using the same order PC expansion but different number of KL modes. In this case, the error
measure is only relevant for the modes that are shared in both representations, namely, those
belonging to the expansion having lower NKL value. A sample of this exercise is shown
in Fig. 20, which shows the L2 norm between temperature modes obtained using second-
order expansions with NKL = 4 and 6. As is evident in the figure, the L2 errors between the
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FIG. 20. L2 norm of the difference in the common temperature modes obtained with intrusive spectral
calculations using NKL = 4 and NKL = 6. In both cases, a second-order PC expansion is used.
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FIG. 21. L2 norms of differences in temperature modes obtained with intrusive spectral predictions using
second- and third-order PC expansions (+), and between predictions obtained using the second-order spectral and
second-order NISP/GH predictions (×). In all cases, NKL = 4.

modal solutions are very small, indicating a very good agreement between the predictions.
The same analysis was repeated with third-order PC expansions (not shown) and revealed
similar trends. This further supports earlier claims that for the present conditions NKL = 4
is sufficient for adequate representation of the stochastic boundary conditions.

Figure 21 shows the L2 norm of the differences between the second-order and third-
order intrusive predictions and between second-order intrusive and second-order NISP/GH
results. In all cases, we use NKL = 4 and L2 norms are shown for all 14 modes in the second-
order PC expansion. The results indicate that for all modes the L2 norms are small, with
magnitudes falling below 10−3. In addition, the differences between second-order NISP and
intrusive predictions are comparable to corresponding deviations obtained using intrusive
spectral computations with NO = 2 and 3. Thus, the deviations between the NISP/GH and
intrusive spectral predictions are of the same order as the spectral trunction errors in the
latter approach.

8.2. Latin Hypercube Sampling

As mentioned earlier, a Latin hypercube sampling approach is also applied to determine
PC mode distributions. LHS is a stratified sampling technique where the random variable
distributions are divided into equal probability intervals, and events are formed by randomly
selecting variables within each of these intervals [32]. LHS typically requires fewer samples
than simple pseudo-random sampling to reach the same degree of convergence, and a
uniform sampling of phase space is assured within the limits of the sample size. In the
computations, the DAKOTA toolkit [37–39] is used to generate the necessary samples of
the uncorrelated Gaussian variables appearing in the KL expansion. Individual realizations
are then projected onto the PC basis to determine the mode distributions.

NISP/LHS computations are performed for a case with NKL = 6, Lc = 1, and σθ =
0.25. The sampling tools in DAKOTA were used to generate a six-dimensional array of
uncorrelated normalized Gaussians. The convergence of the mode amplitudes and the mean
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FIG. 22. Maximum standard deviation of temperature, u-velocity, and v-velocity over the computational
domain plotted vs the sample size. Note that the velocity standard deviations are scaled, as indicated in the legend.

Nusselt number were monitored as the number of realizations increased. An example of the
convergence diagnostics is given in Fig. 22, which shows the maximum standard deviation
for temperature and velocity in the entire domain as a function of the sample size. For the
present set of conditions, a sample of size of 4000 was deemed sufficient for the analysis,
even though statistics are evidently not fully converged, as can be appreciated from the figure.

In the following, we discuss results obtained from NISP/LHS computations in light of
the aforementioned NISP/GH results and the earlier “intrusive” spectral results. The spatial
distributions of PC modes of order ≤2 obtained using NISP/LHS (not shown) were first
compared with corresponding predictions obtained with second- and third-order intrusive
computations. The comparison reveals an excellent agreement for the mean and first-order
modes but noticeable quantitative and qualitative differences do occur in the second-order
modes. We briefly illustrate these differences by plotting in Fig. 23 the L2 norm of the
differences between (i) the NISP/LHS results and the second-order intrusive predictions, and
(ii) the NISP/LHS results and third-order intrusive predictions; the L2 norm of differences
between second- and third-order spectral predictions are also shown for comparison. As
observed earlier, the second- and third-order predictions are in excellent agreement with
each other, with L2 norms falling below 10−3. The differences between the NISP/LHS
and spectral predictions are also small, but the corresponding L2 norms are about an order
of magnitude larger than those of differences between spectral predictions. It can also be
observed that the L2 norms of differences between the NISP/LHS and intrusive predictions
are nearly the same for both second-order and third-order spectral expansions. This indicates
that the differences between NISP/LHS and spectral results are strongly affected by the
sampling errors in the NISP/LHS approach and that, although still small, these errors are
substantially larger than spectral truncation errors.
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FIG. 23. L2 norm of differences in temperature modes obtained with intrusive spectral predictions using
second- and third-order PC expansions (+), intrusive second-order and NISP/LHS with 4000 realizations (×),
and intrusive third-order and NISP/LHS with 4000 realizations (�). In all cases, NKL = 6, and the comparison is
restricted to second-order modes.

Additional insight into the convergence of the NISP/LHS computations can be gained
from Fig. 24, which shows the L2 norm of the differences in mode distributions between
the NISP/LHS and second-order intrusive results, as a function of the sample size. Plotted
in Fig. 24a are L2 norms for the mean and first-order modes; results for modes 7–13 are
shown in Fig. 24b. Generally, the difference between NISP/LHS and spectral predictions
diminishes quickly, but a residual difference remains for all modes as the sample size
increases. The difference decays quicker for the mean and the first-order modes (Fig. 24a),
than for modes 7–13 (Fig. 24b). As can be observed in Fig. 23, the differences between
NISP/LHS and intrusive spectral predictions are such that L2 norms corresponding to the
mean and first-order modes are comparable to or smaller than those corresponding to some
of the second-order modes. Since the latter are significantly weaker than the former, this
indicates that the NISP/LHS predictions of the higher order modes have large relative errors
and are not well converged. This also shows that the sampling errors in NISP/LHS are behind
the observed differences in the distributions of second-order modes.

9. UNCERTAINTY QUANTIFICATION

We conclude this study with a quantitative analysis of the effects of the stochastic bound-
ary conditions on heat transfer statistics within the cavity. We rely on spectral computations
using NKL = 6, NO = 2, and a 140 × 100 computational grid. Results are obtained for
three different correlation lengths and standard deviations, namely, Lc = 0.5, 1, and 2 and
σθ = 0.125, 0.25, and 0.5.

Computed values of Nu and σ(Nu) are reported in Tables V and VI, respectively. Table V
provides the mean Nusselt number along with the difference Nu − Nu0, where Nu0 denotes
the Nusselt number corresponding to the deterministic prediction with θc = −1/2. The
results show that Nu is larger than Nu0. For fixed correlation length, Nu − Nu0 increases
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FIG. 24. L2 norm of differences in temperature modes obtained with second-order intrusive and NISP/LHS
predictions for different sample size: (a) modes 0–6, (b) modes 7–13. In both approaches, NKL = 6, Lc = 1, and
σθ = 0.25.

approximately as σ 2
θ . In contrast, Nu exhibits as weaker dependence on Lc. This is not

surprising since, in the range considered, the eigenvalues λi of KL modes vary slowly with
the correlation length.

Unlike Nu, for fixed Lc the standard deviation σ(Nu) exhibits an approximately linear
dependence on σθ , as shown in Table VI. Furthermore, compared with the mean, σ(Nu)

exhibits a more pronounced dependence on Lc. This trend is consistent with variations of
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TABLE V

Mean Nusselt Number for Different Values of Lc

and σθ with NKL = 6 and NO = 2

σθ

Lc 0.125 0.25 0.5

Nu
0.5 8.902 8.967 9.228
1 8.904 8.974 9.268
2 8.905 8.977 9.293

Nu − Nu0

0.5 0.021 0.086 0.347
1 0.023 0.093 0.387
2 0.024 0.096 0.412

the KL mode amplitudes with the correlation length. As Lc increases, the magnitude of the
first KL modes increases, and since these modes have a dominant impact on the uncertainty,
so does σ(Nu).

Figure 25 depicts probability density functions (PDFs) of the Nusselt number computed
from the spectral solution. Figure 25a shows that the most likely value of Nu is not signif-
icantly affected by σθ , showing a slight decrease as σθ increases. On the other hand, the
skewness of the PDF increases with σθ . In particular, for σθ = 0.5, one observes a flatter
tail at high Nu values than for the lower values. These trends are consistent with earlier
results in Table V, which show that Nu − Nu0 increases substantially as σθ increases.

The effect of Lc on the PDF of the Nusselt number is depicted in Fig. 25b for fixed
σθ = 0.5. Consistent with the results of Table VI the PDF becomes wider as Lc increases.
Besides this trend, Lc appears to have a weak direct influence on the shape of the PDF.

Finally, we note that at σθ = 0.5 the PDF can extend into the negative Nu range. This
indicates that in extreme situations, the “mean” temperature on the right vertical wall may
exceed the constant value on the left vertical wall, leading to a reversal of the circulation
within the cavity and in the wall heat transfer. While such extremes have low probability
and consequently make a small contribution to low-order statistics, they demonstrate the
capability of the present method of treating situations with large uncertainty. To illustrate
these large changes, we plot in Fig. 26 the velocity profiles across the cavity for fixed
Lc = 1 and three different standard deviations, σθ = 0.125, 0.25, and 0.5. The length of
the “uncertainty” bars is proportional to 6 times the local standard deviation. Clearly, the

TABLE VI

Standard Deviation of the Nusselt Number for Different

Values of Lc and σθ with NKL = 6 and NO = 2

σ(Nu)

Lc σθ = 0.125 σθ = 0.25 σθ = 0.5

0.5 1.097 2.186 4.334
1 1.236 2.463 4.859
2 1.322 2.634 5.178
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FIG. 25. PDFs of the Nusselt number computed from the spectral simulations using NKL = 6 and NO = 2:
(a) Lc = 1 and σθ = 0.125, 0.25, and 0.5; (b) σθ = 0.5 and Lc = 0.5, 1, and 2.

FIG. 26. Mean velocity profiles across the cavity for σθ = 0.125 (left), 0.25 (center), and 0.5 (right). The
error bars correspond to 6 times the local standard deviation. The same scaling is used for all three plots. Spectral
results with Lc = 1, NKL = 6, and NO = 2 are used.
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uncertainty bars increase as σθ increases. In particular, for σθ = 0.5 the uncertainty bars
suggest that events with upward velocity near the cold wall become probable. In contrast,
one observes that the mean flow field is not strongly affected by σθ .

10. CONCLUSIONS

In this paper, the SPM [1] has been generalized to account for stochastic input data
generated by a stochastic process. The Karhunen–Loève expansion is used to represent
the stochastic input data. The dependence of the solution process on the random data is
expressed in terms of the polynomial chaos system and the coefficients of the solution are
determined using a weighted residual approach. The resulting stochastic formulation is in-
corporated into a finite-difference projection method, which results in an efficient stochastic
solver.

The properties of the stochastic solver are analyzed in light of computed results for natural
convection within a closed square cavity under stochastic temperature boundary conditions.
In particular, the setup is used to examine the convergence properties of the spectral un-
certainty representation scheme in terms of the number of KL modes and the order of the
PC expansion. Computations are performed for a steady flow regime with Rayleigh num-
ber of 106. For the selected conditions, the results indicate that the spectral representation
converges rapidly, providing accurate results for a second-order expansion using as few as
four KL modes. Numerical tests indicate that the CPU cost of the stochastic computations
is essentially proportional to the number of modes used in the spectral representration, thus
highlighting the efficiency of the stochastic model.

To verify the spectral predictions, stand-alone deterministic computations are performed
and are used in conjunction with “nonintrusive” spectral projection approaches. Two variants
of the NISP approach are implemented, one based on high-order Gauss–Hermite integra-
tion and the other on a Latin hypercube sampling strategy. Results obtained using Gauss
quadrature are in excellent agreement with the spectral predictions, showing very small
differences that are of the order of the spectral truncation errors. Predictions obtained using
the Latin hypercube sampling scheme are also in agreement with the spectral predictions
but exhibit differences that are an order of magnitude higher than those obtained using
Gauss–Hermite quadrature. The verification study underscores the efficiency of the spec-
tral computations, as the number of indepedent realizations needed to adequately represent
the stochastic process is substatially higher than the corresponding number of PC modes.
The analysis also shows that the nonintrusive approach based on Gauss–Hermite quadrature
can be significantly more attractive than that using Latin hypercube sampling, at least for
problems with a moderate number of stochastic dimensions.

The computations are used to quantify the effects of stochastic temperature conditions
on the global heat transfer characteristics within the cavity. The results indicate that the
mean Nusselt number, Nu, is generally larger than Nu0, the Nusselt number corresponding
to the mean (uniform) temperature profile. In particular, the difference Nu − Nu0 is found
to increase quadratically with σθ , the standard deviation of the stochastic temperature pro-
file, but shows a weak dependence on the correlation length Lc. Meanwhile, the standard
deviation of the Nusselt number exhibits an approximately linear dependence on σθ and a
more pronounced dependence on Lc than the mean Nusselt number.

So far, implementations of SPM have been restricted to flow conditions having relatively
simple physical models, involving quadratic nonlinearities only. In other situations, more
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complex physical models may arise that involve higher order nonlinearities. These result
in additional computational challenges for the present approach, particularly regarding the
implementation of the Galerkin scheme. Extensions that address these challenges in the
context of chemically reacting flows are currently being developed.

APPENDIX

A first-order expansion gives a spectral basis involving a set of P + 1 = NKL + 1 or-
thogonal polynomials:


0 = 1, 
i = ξi for i = 1, . . . , NKL = P. (39)

The governing equations for the zeroth-order velocity and temperature modes are

∂u0

∂t
+

NKL∑
i=0

ui · ∇ui = −∇p0 + Pr√
Ra

∇2u0, (40)

∂θ0

∂t
+

NKL∑
i=0

∇ · (uiθi ) = 1√
Ra

∇2θ0. (41)

For k = 1, . . . , NKL the governing equations can be expressed as

∂uk

∂t
+ u0∇uk + uk∇u0 = −∇pk + Pr√

Ra
∇2uk, (42)

∂θk

∂t
+ ∇ · (u0θk + ukθ0) = 1√

Ra
∇2θk . (43)

Meanwhile, continuity gives

∇ · uk = 0, k = 0, . . . , NKL. (44)

The velocity boundary conditions are given by

uk(x, t) = 0 ∀x ∈ ∂�, ∀t and k = 0, . . . . , NKL, (45)

while the scaled temperature boundary conditions are

θ0(x = 0, y) = 1/2, θ0(x = 1, y) = −1/2, (46)

θk(x = 0, y) = 0, θk(x = 1, y) =
√

λk fk(y) for k = 1, . . . . , NKL, (47)

and

∂θk

∂y
= 0 for y = 0, 1 and k = 0, . . . . , NKL. (48)

The first-order PC expansion thus leads to a set of NKL + 1 coupled momentum and heat
equations and a set of NKL + 1 decoupled divergence constraints.
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15. H. Paillere and P. Le Quéré, Modelling and simulation of natural convection flows with large temperature
differences: A benchmark problem for low Mach number solvers, presented at 12th Seminar “Computational
Fluid Dynamics” CEA/Nuclear Reactor Division, Saclay, France 2000.

16. M. Christon, P. Gresho, and S. Sutton, Computational predictability of natural convection flows in enclosure,
in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on
Computational Fluid and Solid Mechanics (Elsevier, Amsterdam, 2001), pp. 1465–1468.

17. D. M. Christopher, Numerical prediction of natural convection flows in a tall enclosure, in Computational
Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid
and Solid Mechanics (Elsevier, Amsterdam, 2001), pp. 1469–1471.

18. G. Comini, M. Manzan, C. Nonino, and O. Saro, Finite element solutions for natural convection in a tall
rectangular cavity, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First
MIT Conference on Computational Fluid and Solid Mechanics (Elsevier, Amsterdam, 2001), pp. 1472–1476.

19. G. Groce and M. Favero, Simulation of natural convection flow in enclosures by an unstaggered grid Finite
volume algorithm, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First
MIT Conference on Computational Fluid and Solid Mechanics (Elsevier, Amsterdam, 2001), pp. 1477–1481.

118
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29. M. Loève, Probability Theory (Springer-Verlag, Berlin/New York, 1997).

30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

31. O. M. Knio and R. G. Ghanem, Polynomial Chaos Product and Moment Formulas: A User Utility, Technical
report (The Johns Hopkins University, Baltimore), to appear.

32. M. D. McKay, W. J. Conover, and R. J. Beckman, A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code, Technometrics 21, 239 (1979).

33. R. Ghanem and S. Dham, Stochastic finite element analysis for multiphase flow in heterogeneous porous
media, Trans. Porous Media 32, 239 (1998).

34. R. Ghanem, Probabilistic characterization of transport in heterogeneous porous media, Comput. Methods
Appl. Mech. Eng. 158, 199 (1998).

35. A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2, 12
(1967).

36. J. Kim and P. Moin, Application of a fractional-step method to the incompressible Navier–Stokes equations,
J. Comput. Phys. 59, 308 (1985).

37. M. S. Eldred, A. A. Giunta, S. F. Wojkiewicz, B. G. van Bloemen Waanders, W. E. Hart, and M. P. Alleva,
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation,
Sensitivity Analysis, and Uncertainty Quantification, Version 3.0 Reference Manual, Sandia Technical
Report SAND02-XXXX, in preparation (Sandia National Laboratories, 2002); http://endo.sandia.gov/
DAKOTA/papers/Dakota hardcoppy.pdf.

38. S. F. Wojtkiewicz, M. S. Eldred, R. V. Field, A. Urbina, and J. R. Red-Horse, A Toolkit for Uncertainty Quan-
tification in Large Computational Engineering Models, Meeting Paper 2001-1455 (AIAA Press, Washington,
DC, 2001).

39. M. S. Eldred, Optimization Strategies for Complex Engineering Applications, Sandia Technical Report
SAND98-0340 (Sandia National Laboratories, 1998).

119



A multigrid solver for two-dimensional stochastic
diffusion equations

O.P. Le Mâııtre a,*, O.M. Knio b, B.J. Debusschere c, H.N. Najm c,
R.G. Ghanem d

a Universit�ee d’Evry Val d’Essonne, Centre d’Etudes de M�eecanique d’Ile de France, 40 Rue du Pelvoux CE 1455,

91 020 Evry cedex, France
b Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA

c Sandia National Laboratories, Combustion Research Facility, Livermore, CA 94550, USA
d Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA

Received 4 October 2002; received in revised form 9 June 2003; accepted 11 July 2003

Abstract

Steady and unsteady diffusion equations, with stochastic diffusivity coefficient and forcing term, are modeled in two

dimensions by means of stochastic spectral representations. Problem data and solution variables are expanded using the

Polynomial Chaos system. The approach leads to a set of coupled problems for the stochastic modes. Spatial finite-

difference discretization of these coupled problems results in a large system of equations, whose dimension necessitates

the use of iterative approaches in order to obtain the solution within a reasonable computational time. To accelerate the

convergence of the iterative technique, a multigrid method, based on spatial coarsening, is implemented. Numerical

experiments show good scaling properties of the method, both with respect to the number of spatial grid points and the

stochastic resolution level.
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1. Introduction

Developments in the field of computational mechanics and physics are enabling the solution of in-
creasingly more realistic engineering problems. These advances take advantage of (i) enhanced computa-

tional capabilities––including parallel platforms and parallel techniques; (ii) elaborate models to handle

more physical effects with less approximation of the system dynamics; and (iii) the development of nu-

merical methods to reduce computational time and/or improve accuracy. As with many other fields, the
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field of computational stochastic mechanics has benefited from such recent developments, and reached a
level of maturity that allows for simulations that provide meaningful predictions to problems involving

uncertain data [36]. Computational stochastic mechanics is particularly attractive in engineering sciences

and physics, where the system to be analyzed can rarely be characterized exactly, while numerical methods

usually require deterministic inputs. The present work takes place in this context.

Uncertainties in simulations of mechanical systems can be related to an inexact knowledge of the system

geometry (e.g. [4,32]), boundary and initial conditions (e.g. [23,24,43]), external forcing (e.g. [18]), physical

properties, or model parameters. Uncertainties can sometimes be due to measurement difficulties or to the

intrinsic randomness of the processes, as in the case of heterogeneous media [14,15,29]. In order to deal with
these uncertainties, distinct computational strategies have emerged, including Monte Carlo simulations

(MCS) [25] and the integration of stochastic differential equations (SDE) [17,20], or a blend of the two. In

MCS, the response surface of the random process is estimated by computing the deterministic responses of

the system for a (large) set of distinct conditions that appropriately sample the uncertainty domain. In

contrast, integration of the SDE governing the system is usually more difficult than the correspond-

ing deterministic problem. Usually, integration of the SDE is achieved approximately, through statistical

linearizations, asymptotic expansions, perturbation methods or truncated spectral representations. In the

present study, uncertainty is taken into account by means of spectral expansions along the stochastic di-
mensions using Polynomial Chaos (PC) representations [5,42]. This representation is used to obtain a full

statistical characterization of the response, in contrast with the other cited approaches which are usually

limited to the very first statistical moments. Moreover, the spectral representation is now well established.

Over the last few years, this technique has been successfully applied in various settings, including both solid

and fluid mechanics [14,18,19,21,23,24,26,28,29,33,36–38].

In this work, we focus on a ‘‘generic’’ diffusion problem for a quantity u, with a random, spatially vary-

ing isotropic diffusion coefficient k, inside a two-dimensional domain D. The general form of the govern-

ing equation for this problem can be expressed as:

a
ouðx; t; hÞ

ot
¼ $ � ½kðx; t; hÞ$uðx; t; hÞ� þ sðx; t; hÞ; ð1Þ

where a ¼ 0, 1 in the steady and unsteady cases, respectively, s is a given stochastic source term, and hðxÞ
denotes the stochastic character of the solution. The formulation is completed by specifying boundary

conditions for u (generally Neumann or Dirichlet conditions), as well as an initial condition in the unsteady

case. The elliptic form of Eq. (1) has been thoroughly analyzed from the mathematical point of view; see for
instance [3,7,20,40].

Our current interest in an efficient solution method for Eq. (1) comes from the simulation of reacting

electrochemical microchannel flow [9], where the steady form of the equation governs the electric field.

There, u is the electrostatic field potential, k is the electrical conductivity, and s is the charge accumulation

due to diffusion of dissociated species (ions). k and s are expressed as:

k ¼ F 2
X

z2i lici; s ¼ F
X

zi$ � ðDirciÞ; ð2Þ
where F is the Faraday constant, zi, li, Di and ci are the charge number, electrophoretic mobility, molar

diffusivity and molar concentration of the species i respectively [35]. Eq. (1) becomes stochastic whenever k,
s or the initial/boundary conditions on u are uncertain. In addition to this specific example, Eq. (1) appears,

by itself or as part of a larger system, in the formulation of many problems involving gradient diffusion
processes [9,19–21,23,26,33,37], as well as a variety of problems such as 1D-linear elasticity problems [10]

and electromagnetism [38]. Therefore, an abstract study in a broader context than electrochemical flow is

well justified.

A major difficulty in the solution of Eq. (1) concerns the representation of the stochastic diffusivity and

source fields, and of the solution itself. As stated before, we will make use of spectral representations [17]
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for this purpose. For brevity, but without loss of generality, the diffusivity field will be represented in terms
of the Karhunen–Lo�eeve (KL) expansion, which is assumed to be known. Following the discussion above,

this enables us to avoid describing the auxiliary problem of explicitly modeling the uncertainty in k, and
consequently focus our attention on the solution for u, which is sought in terms of its PC representation

[17,20,36]. While the source term s may also be given in terms of a KL representation or more generally by

a PC expansion, we will restrict our attention in the numerical tests to the case where s � 0, i.e. to the

homogeneous form of Eq. (1). For the purpose of the present construction, this enables us to avoid un-

necessary details associated with setting up a stochastic source field. Both of these restrictions, however,

can be easily relaxed within the framework of the construction.
One potential drawback of the spectral approach is that the size of the system of equations that needs to

be solved grows rapidly as the number of stochastic dimensions increases. Specifically, the size of the

stochastic system scales with the number of spectral-expansion modes retained in the computation, which

increases rapidly with the number of dimensions and with the order of the expansion. Furthermore, since

the equations governing the uncertainty modes are generally coupled, the CPU time needed to solve the

stochastic system can increase rapidly with system size. This poses a serious computational challenge, which

requires the development of efficient solvers [30,31,34]. The present study specifically aims at this objective,

in the context of the generic formulation given in Eq. (1). Specifically, we describe the adaptation of a
(deterministic) multigrid (MG) technique [41] for the solution of the system of equations arising from the

finite-difference discretization of the spectral representation of the stochastic diffusion equation.

This paper is organized as follows. In Section 2, we recall the basic concepts and properties of the PC

expansion of a stochastic process. Using these concepts, the stochastic spectral formulation of Eq. (1) is

derived in Section 3 and the difficulties inherent to the solution of the spectral equations are discussed.

Next, the finite-difference discretization of the stochastic system is introduced (Section 4), and an iterative

technique is proposed to solve the resulting set of equations. In Section 5, a multigrid technique, based on

spatial coarsening, is developed to improve the convergence rate of the previous iterative method. The
multigrid algorithm is applied to selected test problems in Section 6, and the tests are used to examine its

efficiency and scalability properties. Major findings are summarized in Section 7.

2. Polynomial Chaos representation

2.1. Spectral representation

In this section, the spectral representation of the stochastic process uðx; t; hÞ by means of the PC system is

introduced. We consider the case where the uncertainty is due to a set of N independent (uncorrelated)

stochastic parameters. The problem is then said to possess N stochastic dimensions, denoted by n1; . . . ; nN ,
which are considered as generators of new dimensions (in addition to the space and time dimensions) in the

solution process. Thus we have h � fn1; . . . nNg. Noting that u is a non-linear functional of its stochastic

argument h, it is natural to look for an orthogonal expansion of u in terms of the random variables ni,
i ¼ 1; . . . ;N . This idea has lead to the concepts of homogeneous chaos and of PC expansions [5,17,42], in

the case of Gaussian variables. The case of non-Gaussian measures is discussed in [12,13], but will not be
considered here.

The dependence of uðx; t; hÞ on its stochastic arguments is approximated with the following truncated

expansion:

uðx; t; hÞ ¼
XP
k¼0

ukðx; tÞWkðhÞ; ð3Þ
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where uk are deterministic coefficients and fW0; . . . ;WPg is a (truncated) orthogonal basis consisting of

multidimensional Hermite polynomials in ni. The truncation is such that the degree of the polynomials is at

most equal to N0, the order of the expansion. The total number of modes, P þ 1, depends on N and N0,

according to [8]:

P þ 1 ¼ ðN þ N0Þ!
N !N0!

: ð4Þ

The orthogonality of the spectral basis fWk; k ¼ 0; . . . ; Pg on which u is expanded is defined with respect to

the inner product:

WiWj

� � � Z � � �
Z

WiðhÞWjðhÞgðn1Þ � � � gðnnÞdn1 � � � dnn; ð5Þ

where

gðnÞ ¼ e�n2=2ffiffiffiffiffiffi
2p

p ð6Þ

is the Gaussian measure. Since h is a Gaussian vector, inner products (Eq. (5)) and higher moments can be
efficiently computed using moment formulas [22], based on a straightforward generalization of Gauss

quadrature in one spatial dimension [1].

2.2. PC expansions of field variables

In general, all field variables may exhibit a stochastic character and should therefore be represented with

PC expansions. In particular, the diffusivity and source fields can be expressed as:

kðx; t; hÞ ¼
XP
k¼0

kkðx; tÞWkðhÞ; sðx; t; hÞ ¼
XP
k¼0

skðx; tÞWkðhÞ; ð7Þ

respectively. Clearly, if k and s are deterministic, then all modes with index k > 0 vanish identically. When

this is not the case, the solution process u immediately admits a stochastic character, even when the

boundary and, if relevant, initial conditions are deterministic.

The formulation above is quite general, and enables us to accommodate situations where the initial and

boundary conditions on u, the diffusivity field, k, and source field, s, are all uncertain. While the general case

may be of interest, its treatment would require a detailed analysis of the source of uncertainty, which would
distract from the present objective. Thus, in order to limit the scope of the simulations, while at the same

time provide a meaningful test to the solver below, we restrict our attention to the case of a random dif-

fusivity, deterministic boundary conditions, and vanishing source field. The diffusivity k is assumed to be

given by a Gaussian process with an exponentially decaying covariance function:

Cðx; x0Þ ¼ r2
k exp�

kx� x0k
Lc

; ð8Þ

where Lc is the correlation length and rk is the standard deviation. We then use KL expansion [16,27] to

express kðxÞ as:

kðxÞ ¼ �kkþ
X1
k¼1

ffiffiffiffiffi
bk

p
kkðxÞnk; ð9Þ

where �kk is the mean value, nk are uncorrelated Gaussian variables with zero mean and unit variance, while

bk and kk are, respectively, the eigenvalues and eigenfunctions appearing in the spectral representation of C:
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Cðx; x0Þ ¼
X1
k¼1

bkkkðxÞkkðx0Þ: ð10Þ

Note that, in general, �kk may vary in space, but we shall restrict our attention in the computations below to

the case of a uniform mean value.

In the computations below, the eigenvalues and eigenfunctions are obtained with the Galerkin procedure

described in [14–16]. The eigenvalues, all positive, are arranged in decreasing magnitude, and the KL ex-

pansion is truncated after the first N terms. Also note that the first N Polynomial Chaoses coincide with the
normalized Gaussian variables nk, i.e. WkðhÞ ¼ nk for k ¼ 1; . . . ;N . Thus, the KL representation of k can be

formally viewed as a special case of a PC representation (Eq. (7)) in which polynomials of degree larger

than one have vanishing coefficient. Different cases are considered by varying rk and Lc, and analyzing their

effect on the performance of the solver.

3. Continuous formulation and time discretization

3.1. Stochastic spectral diffusion equation

Introducing the PC expansions of the diffusivity, source and solution fields into the diffusion equation

(1), one gets:

a
XP
k¼0

ouk
ot

Wk ¼
XP
l¼0

XP
m¼0

WlWm$ � ½klðx; tÞ$umðx; tÞ� þ
XP
k¼0

skðx; tÞWk: ð11Þ

Then, multiplying this equation by Wi, evaluating its expectation and taking into account the orthogonality

of the PC basis, we obtain:

a
ouiðx; tÞ

ot
¼
XP
l¼0

XP
m¼0

Milm$ � ½klðx; tÞ$umðx; tÞ� þ siðx; tÞ for i ¼ 0; . . . ; P : ð12Þ

The multiplication tensor

Milm � hWiWlWmi
hWiWii ð13Þ

is independent of the solution, and is therefore computed and stored during a pre-processing stage. A multi-

dimensional Gauss-quadrature approach [22] is used for this purpose. The tensor M is sparse with a

structure that depends on the order of the PC expansion and on the number of stochastic dimensions. The

sparse nature of M comes from the fact that many of the triple products WiWjWk, have vanishing expec-

tation. For instance, due to orthogonality hW0WiWji ¼ di;jhW2
i i. Also note that the triple product WiWjWk

can be written as the product of 1D polynomials, according to:

WiWjWkðn1; . . . ; nNÞ ¼
YN
q¼1

pqijkðnqÞ; ð14Þ

where pqijkðnqÞ is a triple product of 1D Hermite polynomials. Thus, in order for hWiWjWki to vanish, it is

sufficient that only one pqijk has vanishing expectation. On the other hand, M is generally not diagonal

(except for N0 ¼ 0), which leads to coupling between the ui modes. An immediate consequence of this
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coupling is an increase in the size of the resulting system of equations to be solved, compared to the de-

terministic case.

For unsteady problems, the use of an explicit time integration scheme for Eq. (12), as proposed in [23] in

the context of the Navier–Stokes equations, leads to a simple algorithm that requires direct evaluation of

the coupling terms. The use of explicit time-schemes has shown its efficiency for transient computations, but

explicit stability restrictions on the time step can prove prohibitive on fine grids. For steady-state problems,

a pseudo-transient approach may also be conceived, but in this case as well stability restrictions may lead to

poor computational efficiency. Consequently, the development of an efficient numerical solver for the
coupled system of equations is needed. This approach is adopted in the development below.

3.2. Boundary and initial conditions

Boundary conditions, and, when relevant, initial conditions, are needed to solve Eq. (12). These are also

implemented in a ‘‘weak sense’’, i.e. the boundary conditions are also projected onto the PC basis, leading

to explicit conditions for each of the ui�s. As noted in the introduction, the boundary conditions in the

present study can be either of the Neumann or Dirichlet type. For brevity, we assume here that the
boundary conditions are deterministic; an example of the use of uncertain boundary conditions is given in

[24]. Denoting by oDD and oDN the part of the boundaries of D where Dirichlet and Neumann conditions

apply, respectively, the boundary conditions for all modes are given by:

u0ðx; tÞ ¼ uDðx; tÞ; ui2½1;P �ðx; tÞ ¼ 0 8x 2 oDD; ð15Þ

ou0
on

ðx; tÞ ¼ gN0 ðx; tÞ;
ouk
on

ðx; tÞ ¼ 0; k ¼ 1; . . . ; P 8x 2 oDN ; ð16Þ

where n denotes the direction normal to the boundary.
Note that for steady problems involving only Neumann conditions, the modes of the source field must

satisfy the integral constraintsZ
D
skðxÞdx ¼

Z
oD

XP
l¼0

Mkl0klgN0 ds for k ¼ 1; . . . ; P : ð17Þ

Here, ds is the surface element along oD. For unsteady problems, an initial condition for u is required. This

initial condition may be deterministic or uncertain. In the former case, we have

u0ðx; t ¼ 0Þ ¼ u00ðxÞ; ukðx; t ¼ 0Þ ¼ 0; for k ¼ 1; . . . ; P : ð18Þ
On the other hand, when the initial condition is uncertain, initial conditions for all the modes uk need to be

specified.

3.3. Implicit time discretization

A simple, generic, example of an implicit time integration method is the Euler backward scheme, whose

application to Eq. (12) results in the following semi-discrete form:

a
Dt

unþ1
i �

XP
l¼0

XP
m¼0

Milm$ � ½knþ1
l ðxÞ$unþ1

m � ¼ snþ1
i ðxÞ þ a

Dt
uni ; ð19Þ

where Dt is the time step and the superscripts refer to the time level. In the following, the dependence of k
and s on time is dropped, since these fields are assumed to be given.
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4. Finite-difference discretization

4.1. Spatial discretization

Let D � ½0; L� � ½0;H � be a rectangular domain discretized in a set of Nx� Ny non-overlapping cells with

uniform size Dx ¼ L=Nx and Dy ¼ H=Ny in the x- and y-directions. We denote by ðUÞi;j, for i ¼ 1; . . . ;Nx
and j ¼ 1; . . . ;Ny the cell-averaged value of U, so that

ðUÞi;j �
1

DxDy

Z iDx

ði�1ÞDx

Z jDy

ðj�1ÞDy
UðxÞdxdy; ð20Þ

where U stands for any of the field variables uk, kk and sk. Using this convention, we rely on the following

centered, second-order spatial discretization of Eq. (19):

a
Dt

ðunþ1
k Þi;j �

XP
l¼0

XP
m¼0

Mklm

ðklÞiþ1;j þ ðklÞi;j
2

ðunþ1
m Þiþ1;j � ðunþ1

m Þi;j
Dx2

"

� ðklÞi;j þ ðklÞi�1;j

2

ðunþ1
m Þi;j � ðunþ1

m Þi�1;j

Dx2
þ ðklÞi;jþ1 þ ðklÞi;j

2

ðunþ1
m Þi;jþ1 � ðunþ1

m Þi;j
Dy2

� ðklÞi;j þ ðklÞi;j�1

2

ðunþ1
m Þi;j � ðunþ1

m Þi;j�1

Dy2

#
¼ ðsnþ1

k Þi;j þ
a
Dt

ðunkÞi;j; k ¼ 0; . . . ; P : ð21Þ

The above equation can be re-cast in the following generic form:XP
l¼0

XP
m¼0

Mklm

�
ðWlÞi;jðunþ1

m Þiþ1;j þ ðElÞi;jðunþ1
m Þi�1;j þ ðNlÞi;jðunþ1

m Þi;jþ1

þ ðSlÞi;jðunþ1
m Þi;j�1 þ ðCk

l Þi;jðunþ1
m Þi;j

�
¼ ðf nþ1

k Þi;j; k ¼ 0; . . . ; P ; ð22Þ

which shows that a linear system of Nx � Ny � ðP þ 1Þ equations must be solved in order to advance the
solution by one time step. Of course, in the steady case this system is solved only once, and the superscripts

indicating the time level are no longer needed.

4.1.1. Treatment of boundary conditions

Both Dirichlet and Neumann conditions are implemented using ghost cell techniques. For the case of

Dirichlet condition, a ghost cell is introduced at the mirror image with respect to the boundary point of the

neighboring interior cell. The value of the solution at the ghost cell is then determined by linearly ex-

trapolating the solution from the interior, leading to a linear combination of the known value at the

boundary and the neighboring interior node. Using this relationship, the ghost variables are then eliminated

from the equation system. A similar approach is used in the case of a Neumann condition, based on ex-

pressing the known value of the normal derivative in terms of a second-order centered difference formula

involving the solution at the neighboring internal node and the corresponding ghost node. The resulting
relationship is then substituted into the equation system in order to eliminate the ghost variable. This

approach results in a modified system of the formXP
l¼0

XP
m¼0

Mklm

�
ð eWWlÞi;jðunþ1

m Þiþ1;j þ ðeEElÞi;jðunþ1
m Þi�1;j þ ðeNNlÞi;jðunþ1

m Þi;jþ1

þ ðeSSlÞi;jðunþ1
m Þi;j�1 þ ðeCCk

l Þi;jðunþ1
m Þi;j

�
¼ ð ~ff nþ1

k Þi;j; ð23Þ

where the tildes are used to indicate the modified values after implementation of the boundary conditions.
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4.2. Iterative method

Since the size of system (23) is large for most applications, iterative solution methods are preferred over

direct schemes. In this work, Gauss–Seidel iterations are used [39].

4.2.1. Outer iterations

Let us denote by ð~uumÞoui;j the estimate of ðunþ1
m Þi;j after the ou-th Gauss–Seidel iteration. This estimate can

be computed by applying the following algorithm, called outer iterations, in contrast with the inner iter-

ations described later:

• Loop on ou (Gauss–Seidel index)

� For i ¼ 1 to Nx, do

For j ¼ 1 to Ny , do

Find ð~uukÞouþ1

i;j such that:XP
l¼0

XP
m¼0

MklmðeCCk
l Þi;jð~uumÞouþ1

i;j ¼ ð ~ff n
k Þi;j �

XP
l¼0

XP
m¼0

Mklm

�
ð eWWlÞi;jð~uumÞouiþ1;j þ ðeEElÞi;jð~uumÞouþ1

i�1;j

þ ðeNNlÞi;jð~uumÞoui;jþ1 þ ðeSSlÞi;jð~uumÞouþ1

i;j�1

�
� ðQkÞoui;j ; k ¼ 0; . . . ; P ð24Þ

End of loop on j
� End of loop on i

• End of loop on ou

Thus,

ðRkÞoui;j ¼ ðQkÞoui;j �
XP
l¼0

XP
m¼0

MklmðeCClÞi;jð~uumÞoui;j
is the local residual of Eq. (24), for the kth mode, at the ou-th Gauss–Seidel iteration.

4.2.2. Inner iterations

For each point in space, Eq. (24) can be rewritten in vector form as:PP
l¼0 M00lðeCClÞ . . .

PP
l¼0 M0PlðeCClÞ

..

. . .
. ..

.PP
l¼0 MP0lðeCClÞ . . .

PP
l¼0 MPPlðeCClÞ

264
375 �

ð~uu0Þouþ1

..

.

ð~uuP Þouþ1

0B@
1CA ¼

ðQ0Þou
..
.

ðQP Þou

0B@
1CA; ð25Þ

where the grid-point indices have been dropped for clarity. Thus, at this stage, one has to solve a system of

P þ 1 equations to compute ð~uuk¼0;...;P Þouþ1

i;j from Eq. (24). A standard relaxation method (SOR) [39] is em-

ployed for this purpose. Denoting by x the over-relaxation parameter, and by ½Akm� the system matrix

corresponding to (25), the iterations are performed according to:

• Loop over in (SOR index)
� Do k ¼ 0; . . . ; P

Compute a new estimate of ð~uukÞ solution of Eq. (25) using

ð~uukÞinþ1 ¼ ð1� xÞð~uukÞin þ
x
Akk

ðQkÞin
 

�
Xk�1

m¼0

Akmð~uumÞinþ1 �
XP

m¼kþ1

Akmð~uumÞin
!

ð26Þ
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� End of loop over k.
• End of loop over in.

Note that for convenience, the Gauss–Seidel index ou has been dropped in Eq. (26).

Remark. The above decomposition of the iterative scheme into outer and inner loops may appear artificial,

since a global iteration on the three-dimensional system for ðunþ1
k Þi;j could be constructed. However, in view

of the implementation of the multigrid scheme, which is based on spatial coarsening, it is found more
convenient to clearly distinguish the inner iterations––which locally update the spectral coefficients of the

solution, from the outer iterations––which account for the spatial coupling. In addition, computational

tests (not shown) indicate that the convergence of the outer GS iteration is greatly improved when a more

accurate estimate of the exact solution of Eq. (25) is used.

4.3. Convergence of the iterative scheme

The efficiency of the overall iterative method proposed above is estimated through the convergence rate
of ð~uuÞou towards ðuÞnþ1

, as the number of iterations ou increases. This convergence rate depends on the

spectral radius of the system (23). Since Mklm does not depend on the solution variables or parameters, the

spectral radius is only a function of the stochastic diffusivity field kðx; hÞ, of the time-step Dt (if relevant),
and of Dx and Dy. For the deterministic problem (P ¼ 0), it is known that ðkÞi;j P 0 for all i; j is necessary to
ensure convergence, and that the convergence rate deteriorates when a=Dt decreases. In the stochastic case,

the positivity of ki;j is not ensured for all possible realizations. On the other hand, the numerical experiences

in Section 6 indicate that the iterations converge when the coefficient of variation (COV), rk=�kk, is sufficient

small. As COV increases, the convergence rate of the present iterative scheme deteriorates; convergence
fails above a critical value. These experiences appear to be consistent with the theoretical results in [2],

where uniformly distributed random variables were used to ensure positivity. In the latter case, it is shown

[2] that when COV is small, the solution exists and may be obtained by successive approximation.

The measure of convergence is obtained through the L2-norm of the residual for a given mode l which is

expressed as:

Nl �
XNx
i¼1

XNy
j¼1

½ðRlÞi;j�2DxDy
( )1=2

: ð27Þ

The convergence of the iterative method will be further analyzed in Section 6 by monitoring the evolution

of the maximum (over all modes) normalized residual:

Rp � maxl ½NlðpÞ�
maxl ½Nlðp ¼ 0Þ� ð28Þ

where the index p refers to the number of MG cycles.

5. Multigrid acceleration

It is known from the analysis of deterministic diffusion equations that the convergence rate is a function

of spatial frequencies. Specifically, the longest wavelengths exhibit the lowest convergence rate, while short
scales converge faster. To improve convergence, acceleration techniques based on spatial coarsening have

been proposed in the literature [6,11,41]. In the present work, we develop a multigrid technique for the

stochastic case.
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The basic idea of the multigrid technique is to treat the modes with low spatial frequencies on coarser
grids, since fine spatial resolution is not required for these modes. The gain of the method is due to the

faster convergence of the long-wave modes on the coarser grids, as well as the lower CPU cost of the

corresponding iterations. Since multigrid methods are widely used, we will just recall the main ingredients

of the approach, namely (i) the definition of the grid levels, (ii) the projection step and (iii) the prolongation

procedure.

5.1. Definition of grid levels

Thanks to the regular structure of the computational grid, the coarsening is made by merging a set of

neighboring grid cells to give a single cell on the next (coarser) grid level. This leads to a hierarchical set of

grids. In the current implementation, a coarsening step consists of merging four cells (two in each direction)

with surface areas Dxk � Dyk each, to obtain a child cell with surface area Dxkþ1 � Dykþ1 ¼ 4Dxk � Dyk, the
superscripts denoting the respective grid levels. Thus, starting from a grid level k, made of Nxk � Nyk cells,
the next grid level contains Nxkþ1 � Nykþ1 ¼ ðNxk � NykÞ=4 cells. Clearly, this process can be repeated as

long as Nxk and Nyk are even numbers. Whenever one of the number of cells in a direction is odd, the

coarsening automatically switches to a one-dimensional coarsening procedure in which only two cells are
merged to make a child cell. This procedure is illustrated in Fig. 1, where the successive grid levels are

plotted. Clearly the procedure is optimal when Nx and Ny are powers of 2.

5.2. Projection and prolongation procedures

On the finest grid level, a small number Nou of outer iterations is first performed. This provides ap-

proximate solutions ð~uumÞNou
i;j with residuals ðRmÞNou

i;j . These residuals are then projected onto the next coarser

grid, where problem (23) is considered, with ðRmÞNou
i;j as the right-hand side (in lieu of ðfkÞi;j), and with the

same but homogeneous boundary conditions. (In other words, on the coarser grids, the residual equation is

solved.) To do so, one has to provide an estimate of (k) and (Rm) on consecutive grid levels. This is achieved

by averaging their respective values over the parent cells as illustrated in the left scheme of Fig. 2a.

On the new grid level, a few outer iterations are performed, following the same methodology, to obtain

an approximate solution and a residual. The projection process is repeated until the last grid level is

reached. Then, from the coarser grid level, where an estimate solution for the residual equation has been

obtained, it is first transferred to the previous grid level through a prolongation procedure and then used to

correct the solution on that finer grid level. In the current implementation, this is achieved by summing the
cell averaged solution at level k with the solution of its parent cell, as shown in Fig. 2b. When the solution

has been prolongated onto level k � 1, a few outer iterations are performed (smoothing step) the process is

repeated until the initial, fine, grid is reached.

5.3. Multigrid cycles

Starting from the original grid, the application of successive projections up to the coarsest grid level,

followed by successive prolongations up to the starting grid, is referred to as a cycle. Different kinds of
cycles may be used [41], according to the excursion path along the grid levels. For instance, the so-called W-

cycles have been designed to improve the convergence rate of the multigrid method, and many other ex-

amples can be found in the literature. Since our objective here is simply to develop a multigrid methodology

for stochastic diffusion equations, we have limited ourselves to the simplest case of the V -cycle as described
above. Moreover, we use a constant number of Gauss–Seidel iterations, denoted Nou, on every grid-level,

after every projection or prolongation step.
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5.4. Implementation of the multigrid scheme

Implementation of the MG scheme is now summarized as follows:

(1) Initialization:

• Determine spectral basis, compute and store the multiplication tensor M.

• Compute the KL decomposition of the k. (Alternatively the PC expansion of k is imported (e.g. [8]) or
set by the user.)

• Determine the system coefficients for all grid levels:

For ig ¼ 1; . . . ;Ng
� Determine the grid properties: Dxig ¼ 2ig�1Dx, Dyig ¼ 2ig�1Dy, Nxig ¼ Nx=2ig�1, Ny ¼ Ny=2ig�1.

� Compute the cell averaged diffusion field ðklÞigi;j, for i ¼ 1; . . . ;Nxig, j ¼ 1; . . . ;Nyig

Fig. 1. Example of grid coarsening used for the multigrid method. The base grid consists of 32� 256 cells (top left). The mesh is first

coarsened by merging four (two in each direction) cells to form a coarser child cell. When the number of cells in one direction is odd,

the coarsening process switches to 1D merging as in the last three grid levels.
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Fig. 2. Illustration of the (a) projection and (b) prolongation procedures to transfer data between two successive grid levels. In the

projection step, the residual on a given grid is transferred to the next (coarser) grid level by spatial averaging. The same methodology is

used to transfer the diffusivity data. For the prolongation of the solution from one grid level to the next (finer) one, simple addition is

used.
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� Using Eqs. (21) and (22), determine the system coefficients ðCk
l Þigi;j, ðElÞigi;j, ðWlÞigi;j, ðNlÞigi;j, and ðSlÞigi;j.

� Compute and store the modified system coefficients accounting for the boundary conditions:

ðeCCk
l Þigi;j, ðeEElÞigi;j, ð eWWlÞigi;j, ðeNNlÞigi;j, ðeSSlÞigi;j.

End of loop over ig

• Initialize solution.

(2) Loop over time index n:
(a) Compute the right-hand side of system (23) on the first grid level: ð ~ff n

k Þig¼1

i;j .

(b) Initialize solution on the first grid level: ð~uukÞig¼1

i;j ¼ ð~uunkÞi;j.
(c) Beginning of V-cycle

For ig ¼ 1; . . . ;Ng (coarsening)

• If ig > 1 then initialize the solution ð~uuÞig to zero.

• Outer loop:

For ou ¼ 1; . . . ;Nou
� Loop over spatial indices

For i ¼ 1; . . . ;Nig
x

For j ¼ 1; . . . ;Nig
y

Using Eq. (24), compute the right-hand side of Eq. (25).

Inner loop

For in ¼ 1; . . . ;Nin
Loop over mode index

For k ¼ 0; . . . ;P
Apply Eq. (26) to ð~uukÞigi;j
End of loop over k

End of loop over in

End of loop over i, j

End of loop over ou

• If ig < Ng, then
� Compute the local residual ðRkÞigi;j of Eq. (23) on the current grid level.

� Project the local residuals to compute the right-hand side of Eq. (23) at the next grid level

ig þ 1, i.e. determine ð ~ffkÞigþ1

i;j .

End of loop over ig

For ig ¼ Ng� 1; . . . ;1 (refinement)
• Update solution ð~uukÞig through the prolongation of ð~uukÞigþ1

.

• Outer loop:

For ou ¼ 1; . . . ;Nou
� Loop over spatial indices

For i ¼ 1; . . . ;Nig
x

For j ¼ 1; . . . ;Nig
y

Using Eq. (24), compute the right-hand side of Eq. (25).

Inner loop
For in ¼ 1; . . . ;Nin

Loop over mode index

For k ¼ 0; . . . ;P
Apply Eq. (26) to ð~uukÞigi;j
End of loop over k

End of loop over in

End of loop over i, j

End of loop over ou
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End of loop over ig

Compute local residual ðRkÞi;j of Eq. (23) on the first grid level. If one of the norms Nl from Eq.

(27) is greater than the prescribed threshold, then a new V-cycle is performed starting from (c).

(d) Determine the solution: ð~uunþ1
k Þi;j ¼ ð~uukÞig¼1

i;j , for i ¼ 1; . . . ;Nx, j ¼ 1; . . . ;Ny and k ¼ 1; . . . ; P .
(3) End of time loop

6. Results

We now present test results that show the behavior and convergence properties of the multigrid method.

For the test cases below, we set a ¼ 0 and study the stochastic diffusion in a square domain, with unit edge-

length and with no source term (s � 0). Deterministic boundary conditions are used with Dirichlet con-

ditions on x ¼ 0 (where u ¼ 1) and x ¼ 1 (where u ¼ 0), and homogeneous Neumann boundary conditions

for the y ¼ 0 and y ¼ 1 edges. As stated previously, the spatially dependent diffusivity field is modeled using

a truncated KL expansion involving N modes. It is characterized by its variance, coefficient of variation,

and correlation length. To analyze the performance of the scheme, we monitor the evolution of the
maximum (over all the modes) of the L2-norms of the normalized residuals, more specifically the decay of

the peak residual as the number of multigrid cycles increases.

6.1. Multigrid acceleration

6.1.1. Dependence on grid size

We start by examining the dependence of the convergence rate on the number of points involved in the

spatial discretization. To this end, the COV of the diffusivity field is set to 0.1, with a normalized correlation
length Lc ¼ 5. A KL expansion with 5 modes is used (i.e. N ¼ 5), together with a second-order PC ex-

pansion (N0 ¼ 2). With these parameters, P ¼ 20 and so the total number of modes equals 21. The mul-

tigrid parameters are selected as follows: Nou ¼ Nin ¼ 3 and x ¼ 1:5. The computations are performed for

the spatial discretizations of Nx ¼ Ny ¼ 16, 32, 64 and 128; the corresponding number of grid levels are

Ng ¼ 4, 5, 6 and 7. For each, the maximum normalized residual is plotted against cycle number in Fig. 3.

These results clearly show the quasi-independence of the convergence rate with respect to the spatial

discretization. There is a very weak improvement in the convergence rate at the lower values of Nx and Ny,
which may be attributed to the lack of resolution in the representation of the KL modes on the coarser
meshes. This claim is supported by the observation that the convergence rate tends to be grid-size inde-

pendent when Nx and Ny increase. The weak dependence of the convergence rate on the grid size also

highlights the excellent scalability of the method concerning the spatial discretization, as the CPU time

scales roughly as Nx� Ny. Note that the relaxation parameter, x, and number of inner and outer iterations,

Nou and Nin, have been selected based on systematic tests (not shown) to determine their optimal value.

While further refinement of these parameters may be possible, these values will be kept the same for the

remaining cases below, unless explicitly stated.

6.1.2. Effect of grid levels on MG acceleration

Fig. 4 shows the evolution of the peak normalized residual with the number of cycles for a fixed grid with

Nx ¼ Ny ¼ 32. Results obtained for different numbers of grid levels in the V-cycles are shown, namely

Ng ¼ 1, 2, 3, 4 and 5.

The results clearly show the effect of MG acceleration with increasing number of grid levels. The setting

Ng ¼ 1 corresponds to the Gauss–Seidel iteration, applied to the initial system of equations with no

coarsening. Thus, after the first V-cycle (that is 2Nou ¼ 6 GS iterations) the short-scales in the residual

(mostly related to the Dirichlet boundary conditions) have been reduced and the convergence rate falls
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dramatically. This clearly illustrates the lower convergence rate of the larger length scales. When the
number of grid levels is increased to Ng ¼ 2 the convergence rate is slightly improved, but the iterative

method is still inefficient. In fact, the first significant improvement is reported for Ng ¼ 3, where one ob-

serves a residual reduction factor per V-cycle of approximately 0.78. With Ng ¼ 4, the convergence rate is

much larger, as the residual reduction factor per V-cycle is approximately 0.2. As expected, the largest

convergence rate is observed for Ng ¼ 5, with a residual reduction factor close to 0.1. These tests show that

the discretization parameters Nx and Ny should be selected, to the extent possible, so that the coarsest grid

level has a minimum number of cells in each direction. Note, in particular, that the large improvement in

convergence rate between Ng ¼ 3 and Ng ¼ 5 is achieved at a very low additional CPU cost, since the fourth
and last grid levels only involve 16 and 4 cells respectively.

Fig. 3. Convergence of the iterative scheme for different spatial discretizations: Nx ¼ Ny ¼ 16, 32, 64 and 128. The corresponding

number of grid levels are Ng ¼ 4, 5, 6 and 7. COV ¼ 0:1, Lc ¼ 5, N ¼ 5, N0 ¼ 2 (P ¼ 20), x ¼ 1:5, Nou ¼ Nin ¼ 3.

Fig. 4. Convergence of the iterative scheme for Nx ¼ Ny ¼ 32 and Ng ¼ 1, 2, 3, 4 and 5. COV ¼ 0:1, Lc ¼ 1, N ¼ 10, N0 ¼ 2 (P ¼ 65),

x ¼ 1:5, Nou ¼ Nin ¼ 3.
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6.2. Influence of stochastic representation parameters

The behavior of the MG scheme is now investigated in terms of the stochastic representation parameters,
namely the number, N , of KL modes used in the representation of the stochastic diffusivity field, and the

order, N0, of the PC expansion. In the tests below, the spatial discretization parameters are held fixed, as are

the over-relaxation parameter, x ¼ 1:5, the number of grid levels, Ng ¼ 5, and the number of iterations

performed on each grid level, Nin ¼ Nou ¼ 3. The coefficient of variation and correlation length are also held

fixed, COV ¼ 0:1 and Lc ¼ 1, respectively.

6.2.1. Number of KL modes

In these tests, the impact of the number of modes retained in the KL expansion of the diffusivity field is
investigated by varying N . Results are reported in Fig. 5, where the peak normalized residual is plotted

against cycle number for (a) first-order PC expansion with N ranging from 10 to 80, and (b) second-order

PC expansion with N ¼ 10, 15 and 20 (P ¼ 65, 135 and 230, respectively). For both first- and second-order

expansions, the evolution of the residual is independent of N , again showing the efficiency of the MG

scheme. Note that in the present case one cannot infer from this behavior a linear relationship between N
and the CPU time. The latter is in fact a strong function of the number of non-zero terms in M, which

depends on both N and N0. This contrasts with previous observation regarding scalability of the scheme

with respect to the number of grid points.

6.2.2. Effect of PC expansion order on rate of convergence

The results of the previous section show a dependence of the convergence rate of the multigrid method

on the order of the PC expansion. This dependence is further investigated by setting N ¼ 10 and varying

N0 from 1 to 3; with P ¼ 10, 65 and 285, respectively. The convergence of the iterations for these cases is

illustrated in Fig. 6, which depicts the behavior of the peak residual as the number of cycles increases.

The results indicate that the convergence rate decreases slightly as the order of the PC expansion in-

creases. The residual reduction factor per cycle is about 0.09 for N0 ¼ 1 and approximately 0.2 for N0 ¼ 3.
In light of the experiences above, it is evident that the present reduction in convergence rate is not due to the

increase in number of modes P , but rather to the need for additional cycles in order to propagate the

Fig. 5. Peak normalized residual versus cycle number: (a) first-order PC expansion with N ¼ 10, 20, 30, 50 and 80; (b) second-order PC

expansion with N ¼ 10 (P ¼ 65), 15 (P ¼ 135) and 20 (P ¼ 230). In both cases, Nx ¼ Ny ¼ 32, Lc ¼ 1, Nin ¼ Nou ¼ 3, and x ¼ 1:5.
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residual for coupled terms of different order. For the present examples, the convergence rate is still satis-

factory for N0 ¼ 3. In situations requiring higher order expansions, however, further improvement may be

required. This could be achieved for instance by blending the (spatial) MG concepts with a spectral (mode)

coarsening procedure.

6.3. Effects of diffusivity field statistics

We now analyze the effects of the diffusivity field characteristics on the convergence rate, by varying its

statistical parameters. We recall that the diffusivity is parametrized through its COV, which represents the

normalized local statistical spread of the realizations about the expected value, and the correlation length,

which accounts for the spatial variability of the process. The effects of these two parameters are analyzed

separately below.

6.3.1. Effect of diffusivity variance

Tests on the effect of the variance of the diffusivity field are performed using Lc ¼ 1, a KL expansion with

N ¼ 25, and PC expansion of first and second order (P ¼ 25 and 350, respectively). A 32� 32 computa-

tional grid is used and the MG parameters are as follows: x ¼ 1:5, Nou ¼ Nin ¼ 3 and Ng ¼ 5. Results with

different values of rk are reported in Fig. 7.

The results show that, as expected, the convergence rate is strongly dependent on the variance of the

diffusivity field. Actually, the highest convergence rate is achieved for the lowest values of COV (rk ¼ 0:025)
where the residual is reduced with each MG cycle, by a factor of about 0.05 for N0 ¼ 1 (Fig. 7a) and
approximately 0.06 for N0 ¼ 2 (Fig. 7b). Consistent with previous findings, for the same values of rk (and

COV) the second-order PC expansion exhibits slower convergence rate than the first-order scheme.

Moreover, when COV increases, the convergence rate decreases for both the first- and second-order ex-

pansions, but the reduction is more substantial in the latter case. As noted previously, the diffusivity field

should be positive at any point inside the domain. However, the KL expansion does not guarantee this

constraint, and the probability that this constraint is violated increases as COV increases. In fact, for

COVP 0:4 and N0 ¼ 2, the solver did not converge. In contrast, with a first-order expansion the MG

iterations did converge for COV ¼ 0:4, but with a very low convergence rate (not shown). It should be

Fig. 6. Peak normalized residual versus cycle number for N0 ¼ 1 (P ¼ 10), N0 ¼ 2 (P ¼ 65), and N0 ¼ 3 (P ¼ 285). In all cases, N ¼ 10,

Nx ¼ Ny ¼ 32, Lc ¼ 1, Nin ¼ Nou ¼ 3, and x ¼ 1:5.

4738 O.P. Le Mâııtre et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 4723–4744

135



emphasized, however, that the deterioration of convergence rate with increasing COV is due to the extreme

behavior of the corresponding problem, and therefore is not inherent to the present multigrid scheme.

6.3.2. Influence of the correlation length

The effect of the correlation length is analyzed in this section by performing computations with a fixed

variance (COV ¼ 0:1) but varying Lc. As illustrated in Fig. 8, as Lc decreases, the spectrum of k broadens

with higher amplitudes in the small scales. Since the variance is fixed, however, the ‘‘energy’’ content of the

spectrum remains constant.
Fig. 9 shows the convergence rate of the MG iterations for different correlation lengths, Lc ¼ 0:25, 0.5, 1,

2 and 5. Plotted are results obtained using both first- and second-order PC expansions. The results show a

weak dependence of the convergence rate on Lc, indicating that the MG method effectively maintains its

good convergence properties even as small-scale fluctuations in k increase. The weak dependence of the

convergence rate on spatial lengthscales of k has also been observed in deterministic simulations (not

Fig. 7. Peak residual versus number of cycles for different values of rk: (a) first-order PC expansion and (b) second-order PC

expansion. In all cases, Lc ¼ 1, N ¼ 25, x ¼ 1:5, Nou ¼ Nin ¼ 3, Ng ¼ 5 and Nx ¼ Ny ¼ 32.
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Fig. 8. Spectra of the eigenvalues, bk , of the KL expansion for different correlation lengths Lc ¼ 0:25, 0.5, 1 and 5.
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shown). This shows that the extension of the MG scheme to stochastic problems does not adversely affect

its effectiveness in dealing with spatially varying diffusivity. Closer analysis of the results in Fig. 9 also

supports our previous observation that the convergence rate for first-order PC expansions is larger than for

the second-order case, but differences are once again small.

As shown in Fig. 8, decreasing Lc results in a broader eigenvalue spectrum, which raises the question
whether N ¼ 20 KL modes is sufficient to capture all the relevant scales of k. This question arises because

truncation of the KL expansion removes the highest spatial frequencies, and leads to under-estimation of the

variance. To verify that the near collapse of the curves in Fig. 9 with decreasing Lc is not due to such

truncation, simulations were repeated using a first-order PC expansion and a higher number of KL modes,

N ¼ 105. The results (not shown) exhibit essentially the same convergence rate as with N ¼ 20. This indicates

that the the truncation of the KL expansion does not affect the convergence rate of the multigrid solver.

6.4. Selection of multigrid parameters

The computational tests above were performed with fixed MG parameters, which enabled direct com-

parison between various cases and thus simplified the analysis. It is evident, however, that tuning these

parameters can improve the efficiency of the method. For the test cases in the previous sections, selecting

x 2 ½1:2; 1:7� results in convergent iterations, but varying x within this range affected the convergence rate.

Specifically, for fixed tolerance on the peak residual (10�10), the number of cycles needed to achieve this

level varied between 3 and 5 cycles. Consequently, tests should generally be conducted in order to select the

optimal x value for the problem at hand. A similar optimization process should also be conducted for
proper selection of the number of inner and outer iterations. Clearly, using a large number of outer iter-

ations results in an inefficient method, since one does not want to perform a large number of outer iter-

ations on the initial grid level. At the same time, a minimal number of outer iterations is required during

prolongation in order to smooth the solution sufficiently before switching to the next grid level. Thus, Nou

should be carefully optimized. Meanwhile, Nin should be set to the minimum value above which the con-

vergence rate starts to decrease.

Lastly, the efficiency of the multigrid procedure can also be drastically improved by designing cycles with

a more complex structure than the simple V-cycle used in the present work. To illustrate the improvement

Fig. 9. Peak residual versus number of cycles for N ¼ 20 KL modes and different values of Lc: (a) first-order PC expansion (P ¼ 20);

(b) second-order PC expansion (P ¼ 350). In all cases, COV ¼ 0:1, Nin ¼ Nout ¼ 3, x ¼ 1:5 and Nx ¼ Ny ¼ 32.

4740 O.P. Le Mâııtre et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 4723–4744

137



that can be achieved by adaptation of cycle structure, a line-coarsening strategy, designed for highly

stretched grids and/or domains with high aspect ratios, is briefly outlined below. Assuming that Dx � Dy,
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Fig. 10. Example of line-coarsening strategy for highly stretched grids. Instead of the usual V-cycle, the coarsening is first performed

along the well resolved direction, and next in the second direction. Treatment (sub-cycles) of the second direction is repeated until the

residual is reduced to the selected tolerance level.

Fig. 11. Convergence rate of MG iterations: V-cycle approach (top) and line coarsening strategy (bottom). Curves are generated for

solutions obtained in domains with different aspect ratio, L=H . In both sets of simulations, Nx ¼ 128, Ny ¼ 32, Nou ¼ 3, Nin ¼ 2,

x ¼ 1:5, N0 ¼ 2 and N ¼ 3. The stochastic diffusivity field has Lc ¼ L and COV ¼ 0:1.
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the strategy consists of (i) performing a 1D-coarsening along the y-direction only, which eventually leads to
a quasi-1D problem in x; (ii) applying a 1D MG approach in the x-direction, which is iterated until the

overall tolerance level is reached; and (iii) performing a prolongation in the y-direction only. This cycle,

whose structure is schematically illustrated in Fig. 10, is repeated until the residual on the original fine grid

drops below the desired tolerance level.

In Fig. 11 we contrast the convergence rates of the MG scheme using the V-cycles and of the adapted

MG scheme outlined above. In both cases, the number of grid cells is fixed, Nx ¼ 128 and Ny ¼ 32, but the

aspect ratio, L=H , of the domain is varied. Note that the case L=H ¼ 4 corresponds to a grid with square

cells, i.e. Dx ¼ Dy. For the V-cycle iterations, the results indicate that the convergence rate deteriorates as
the cell aspect ratio increases. Meanwhile, with the line-coarsening strategy, the convergence rate improves

as L=H is increased from 8 to 40; for higher aspect ratios, up to L=H ¼ 400, the convergence rate decreases

slightly, but remains at a satisfactory level. In contrast, for such high aspect ratios, the regular V-cycle

iterations are quite inefficient.

7. Conclusions

A multigrid scheme for the simulation of steady and unsteady stochastic diffusion equations was de-

veloped, and computational tests were conducted to analyze its behavior. In particular, these tests show

that:

• The MG scheme exhibits a fast rate of convergence and good scalability with respect to spatial resolution

in a fixed domain.

• The convergence rate is independent of the number of stochastic dimensions as long as the variance of

the diffusivity field is held fixed.
• The convergence rate drops slowly as the order of the PC expansion increases.

• The convergence rate deteriorates substantially as the variance of the stochastic diffusivity field becomes

large, but satisfactory convergence rates are still observed for COV up to 0.2. On the other hand, the

convergence rate decreases slightly as the correlation length of the stochastic diffusivity field is decreased.

• Selection of MG parameters and cycle structure can drastically affect the efficiency of the iterations.

These parameters should therefore be carefully optimized.

Future work will aim at enhancing the present MG approach, particularly for situations involving large
variance and high order PC expansions. An attractive approach that is currently being explored is based on

exploiting the structure and sparsity of the stochastic system. This structure suggests a hierarchical iterative

strategy [34], which has been successfully exploited in the context of stochastic finite elements. In particular,

it appears that incorporation of such an approach into the present MG framework could lead to a sub-

stantial performance enhancement.
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4742 O.P. Le Mâııtre et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 4723–4744

139



References

[1] M. Abramowitz, L.A. Stegun, Handbook of Mathematical Functions, Dover, 1970.

[2] I. Babuska, P. Chatzipantelidis, On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg.

191 (2002) 4093–4122.

[3] I. Babuska, K.M. Liu, On solving stochastic initial-value differential equations, Technical report, TICAM Report 02-17, The

University of Texas at Austin, 2002.

[4] E. Bielewicz, J. G�oorski, Shells with random geometric imperfections simulation-based approach, Int. J. Nonlinear Mech. 37 (2002)

777–784.

[5] R.H. Cameron, W.T. Martin, The orthogonal development of nonlinear functionals in series of fourier-hermite functionals, Ann.

Math. 48 (1947) 385–392.

[6] S.F. McCormick, Multigrid Methods, SIAM, 1987.

[7] M.K. Deb, I.M. Babuska, J.T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques,

Comput. Methods Appl. Mech. Engrg. 190 (2001) 6359–6372.

[8] B. Debusschere, H. Najm, A. Matta, O. Knio, R. Ghanem, O. Le Mâııtre, Numerical simulation and quantitative uncertainty
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Protein labeling reactions in electrochemical microchannel flow: Numerical
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This paper presents a model for two-dimensional electrochemical microchannel  ow including the
propagation of uncertainty from model parameters to the simulation results. For a detailed
representation of electroosmotic and pressure-driven microchannel  ow , the model considers the
coupled momentum, species transport, and electrostatic  eld equations, including variable zeta
potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as
detailed buffer electrochemistry in a mixed  nite-rate/equilibrium formulation. Uncertainty from the
model parameters and boundary conditions is propagated to the model predictions using a
pseudo-spectral stochastic formulation with polynomial chaos �PC� representations for parameters
and  eld quantities. Using a Galerkin approach, the governing equations are reformulated into
equations for the coef cients in the PC expansion. The implementation of the physical model with
the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as
well as in two-dimensional electrochemical microchannel  ow . The results for the two-dimensional
channel show strong distortion of sample pro les due to ion movement and consequent buffer
disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage
across the channel. © 2003 American Institute of Physics. �DOI: 10.1063/1.1582857�

I. INTRODUCTION

Microchannel  ows, involving electroosmotic  ow of
charged components in an electrolyte buffer, are generally
characterized by strong coupling between multiple physical
and chemical processes.1 Numerical simulations for detailed
studies of phenomena such as analyte dispersion therefore
require accurate models for the  uid  ow , species transport,
chemical reactions, buffer equilibrium, protein ampholytic
behavior, electrostatic  eld strength, wall layer, and many
other processes.2 Most of these processes are well under-
stood and adequate models are generally available. Many
simulations of microchannel  ow can be found in the litera-
ture, with varying detail in the resolution of the ongoing
physical processes.3–13 However, simulations that take into
account the full range of coupled processes in microchannel
 ows are hard to  nd.

Further, the mathematical models for these physical pro-
cesses generally require knowledge of several parameters
such as species mobilities, viscosity, electrolyte dissociation
constants, reaction rate parameters, and other physical and

environmental parameters. These parameters are typically
not known exactly due to experimental measurement uncer-
tainties and/or inherent variability. Consequently, computa-
tional predictions will have some uncertainty, associated with
the uncertainties in the input parameters. In order to make
valid comparisons between experimental and computational
data, or to assess the reliability of computational predictions,
a careful analysis of the uncertainty in the simulation results
is required.

In the current work, a detailed model is developed of
both electroosmotic and pressure-driven  ow in a micro-
channel  lled with an electrolyte buffer and model protein
analyte samples. The construction considers the fully
coupled momentum, species transport, and electrostatic  eld
equations, including a model for the dependence of the zeta
potential on pH and buffer molarity. A mixed  nite-rate,
partial-equilibrium formulation is applied for the chemical
reactions. In particular, ‘‘fast’’ electrolyte reactions are de-
scribed by associated equilibrium constraints, while the re-
maining ‘‘slow’’ protein labeling reactions are modeled with
 nite-rate kinetics.

To quantify the uncertainty in the model predictions, due
to uncertainty in the input parameters, a stochastic uncer-
tainty propagation method14 is applied. This method intro-
duces a new stochastic dimension for each uncertain param-
eter, and uses polynomial chaos �PC� expansions15 to
describe the dependence of model parameters and  ow quan-
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tities on these dimensions. After introducing these PC repre-
sentations into the governing equations, a Galerkin approach
is used to determine evolution equations for the spectral
mode strengths in the expansion. The resulting system is
more complex than the corresponding deterministic model,
requiring more computational effort. However, it is poten-
tially more ef cient than Monte Carlo �MC� simulations.16

Moreover, the pseudo-spectral PC approach readily provides
sensitivity information and the contribution to the total un-
certainty by each of the model parameters.

First we outline the formulation of the governing equa-
tions that constitute the deterministic system model. Next,
we implement the stochastic uncertainty quanti cation
method to reformulate these equations into evolution equa-
tions for the spectral mode strengths. We then proceed to the
description of the numerical construction used to integrate
the resulting set of equations, highlighting particular devel-
opments necessary for handling the coupled evolution of mo-
mentum, species, and the electrostatic  eld. The methodol-
ogy is then applied to model protein labeling reactions in
homogeneous systems as well as two-dimensional micro-
channel  ows. The results illustrate the convergence of the
construction as well as the propagation/growth of uncertainty
in the simulations. The detailed physical model gives insight
into important micro uidic sample dispersion mechanisms.

II. PHYSICAL MODEL FORMULATION

A. Momentum

The continuity and momentum equations for a two-
dimensional  ow  eld in the (x ,y) plane, with uniform den-
sity and viscosity are given by17

�"u�0, �1�

�u
�t �u"�u���p���2u, �2�

where u is the velocity, p is the pressure normalized by den-
sity, and � is the kinematic viscosity.

The microchannel  ows in this study are electroosmoti-
cally driven with an applied electrostatic  eld in the x direc-
tion. Assuming a double layer that is thin with respect to the
channel size, the effect of wall electrostatic forces can be
represented in terms of a wall slip velocity uw , using the
Helmholtz–Smoluchowski relationship17

uw�
�	



�t�w , �3�

where � is the permittivity of the  uid, 	 is the zeta potential,
�w is the electrostatic  eld potential at the wall, and 
 is the
dynamic viscosity. Since both the electrostatic  eld and the 	
potential depend on the  uid composition, Eq. �3� represents
a major coupling between the  ow velocity and the species
transport.

The 	 potential is a function of the wall material and
 uid characteristics.7,18 In this work, a relationship for 	 as a
function of the local pH and buffer molarity was obtained
from empirical data for the zeta potential of a fused silica
capillary in an aqueous solution of KCl, as shown in Fig. 1.19

These data were curve- tted into the following relationship:

	�pH,M�

����pH�2 ��„ 1
2 � 1

2 tanh �5�pH�7.5��…�pH�7.6�


�„�2.7 ln�M�2.3�10�4�…, �4�

where M is the molarity of the KCl solution. The quantita-
tive accuracy of this curve- t is obviously limited to systems
similar to the one considered in Ref. 19. However, Eq. �4�
qualitatively gives the correct behavior of 	(pH,M) for vari-
ous other systems.7,18

B. Species concentrations

A variety of species are considered in this work, ranging
from model proteins and dyes in samples, to the ions of
aqueous buffer solutions. The transport of these species is
governed by17

�ci

�t ��"�ci�u�ui
e����"�Di�ci��ŵ i, �5�

where ci is the concentration of species i, and Di is the
corresponding diffusivity. The electromigration velocity ui

e

accounts for the electrophoretic movement of electrically
charged species relative to the bulk  ow . This velocity is
given by17

ui
e��� iz iF�� , �6�

where � i is the electrophoretic mobility for species i, zi is the
charge number, F is the Faraday constant (9.648�104

C/mol�, and � is the electrostatic  eld potential. The term ŵ i
is a source term from the chemical and electrochemical re-
actions in which species i is involved. Note that for each
species, the diffusivity Di and the mobility � i are coupled
through the Nernst–Einstein equation17

Di�RT� i , �7�

where R is the universal gas constant and T the temperature.
The integration of Eq. �5� is performed differently de-

pending on the chemical time scales involved. In general,

FIG. 1. Empirical data and curve  t for the 	 potential of a fused silica
capillary vs pH in an aqueous solution of KCl at various molarities. Adapted
with permission from Ref. 19, Copyright 1992 American Chemical Society.
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electrolyte association and dissociation reaction rates are
several orders of magnitude faster than electrophoretic
phenomena1 and typical sample-processing reactions. Thus,
direct integration of fast reactions would impose severe time
step restrictions. In order to avoid these dif culties, an equi-
librium approach for the electrolyte reactions is imple-
mented. For example, consider a weak acid HA, which dis-
sociates according to

HA↔
KA

H��A�, �8�

where

KA�
�H���A��

�HA�
�9�

is the corresponding dissociation constant. Instead of inte-
grating Eq. �5� for the concentrations of species HA and A�

individually, consider the combined concentration of both of
these quantities �a��HA���A�� . The source terms for
�HA� and �A�� from the electrolyte reaction �8� cancel out
in the �a transport equation, which is the sum of the transport
equations for the two individual quantities,

��a

�t ��"�cHA�u�uHA
e ��cA��u�uA�

e
��

��"�DHA�cHA�DA��cA�� . �10�

Therefore, barring any other chemical reactions involving
these species, �a is a conserved quantity and can be inte-
grated with Eq. �10� without a chemical source term.2,4,10

Note that if the chemical source terms for HA or A� in Eq.
�5� do include participation by reactions other than the HA
buffer chemistry, e.g., by �typically slow� sample chemistry,
then the utilization of �a is still advantageous in that it elimi-
nates the fast electrolyte reactions, but in this case �a is no
longer a conserved scalar. In either case, one arrives at a
governing equation for �a , which does not include the fast
reaction terms. Once �a is known, the concentrations of the
individual components of the weak acid are obtained from

�HA��
�H��

�H���KA
�a��HA��a , �11�

�A���
KA

�H���KA
�a��A���a . �12�

Note that this construction is equally useful for buffers with
multiple dissociation states, where �a is the sum of concen-
trations of the weak acid and all of its dissociated states.
Since the mobilities and diffusivities are generally different
for the species that make up �a , the convection and diffusion
terms in the transport equation for �a are calculated as the
sum of the convection and diffusion for each species in �a .
A similar approach holds for weak bases.

For strong acids and bases, which are fully dissociated in
the solution, or for other species that do not take part in
electrolyte dissociation and association reactions, Eq. �5� can
be integrated directly. The model proteins and  uorescent
dyes in this work are assumed to have a  xed charge, so their
concentrations are integrated using Eq. �5�, with an appropri-

ate  nite-rate chemical source term. However, a complete
ampholyte description for proteins can readily be formulated
with a similar framework as is used for the weak acids and
bases.2,20–22 In the simulations in this work, proteins are as-
sumed to take part in a  nite rate, irreversible labeling reac-
tion of the form

U�D→
kL

L �13�

with a pH-dependent reaction rate kL�kL(pH). In Eq. �13�,
U is the unlabeled protein, D the  uorescent dye, and L the
labeled protein.

Since a thin double layer is assumed, the system is also
assumed to satisfy the electroneutrality condition

�
i

z ici�0 �14�

everywhere in the domain. The concentrations of H� and
OH� are obtained from this electroneutrality condition and
the water dissociation constant

�H���OH���Kw . �15�

Note that the composition, and therefore also the total
charge, of weak acids and bases in the system depends on the
H� concentration �see Eqs. �11� and �12� above�. The sub-
stitution of Eqs. �12� and �15� into the electroneutrality con-
dition �14�, in order to account for the dependence of �A��
and �OH�� on �H�� , introduces nonlinear terms in this
equation. For buffers with multiple dissociation states, even
more nonlinear terms are introduced. Therefore, an iterative
solution of the electroneutrality condition for �H�� is usually
required.

C. Electrostatic field strength

Allowing for concentration  eld gradients, the electro-
static  eld potential, � , is obtained from the current conti-
nuity constraint,17

�"�������F�
i

z i�"�Di�ci�. �16�

This equation is coupled to the species concentrations
through the right-hand side �diffusion of charge� and the
electrical conductivity � of the solution

��F2�
i

z i
2� ic i . �17�

The electrostatic  eld strength is then obtained as E
���� .

This completes the description of the key elements of the
deterministic model formulation. We next outline the sto-
chastic construction for uncertainty quanti cation, and its
implementation in this model.

III. STOCHASTIC FORMULATION

To propagate uncertainty from the input parameters of
the physical model, to the results of model simulations, we
use a spectral stochastic formulation based on polynomial
chaos �PC� expansions.14,15 For each uncertain parameter,
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this technique introduces a new stochastic dimension � ,
where � is a random variable with a standard normal Gauss-
ian probability density function �PDF�. The parameter is then
modeled as a random variable whose dependence on � is
described using a spectral PC expansion. For example, the
species diffusivity D is written as

D���� �
k�0

P

Dk�k���, �18�

where the �k are the PC basis functions and the determinis-
tic coef cients Dk are the spectral mode strengths. If the
model has only one uncertain parameter, then the basis func-
tions are the one-dimensional Hermite polynomials:

�0�1, �1�� , �2��2�1, �3��3�3� , . . . . �19�

In this case, P corresponds to the highest order polynomial
used in the expansion. For a model with N uncertain param-
eters, an N-dimensional stochastic space is considered, and
the �k are N-dimensional Hermite polynomials up to a
speci ed order p in the Gaussian variables �
���1 ,�2 , . . . ,�N
,14 such that

D���� �
k�0

P

Dk�k���. �20�

Note that in this case, the Gaussian variables �1 , . . . ,�N are
assumed to be uncorrelated. The number of terms (P�1) in
the expansion corresponds to the number of polynomials
with order less or equal to p. Higher order polynomial chaos
basis functions increase the accuracy of the spectral repre-
sentation, but add a lot more terms for problems with many
stochastic dimensions.

The solution  eld variables, such as velocities, concen-
trations, and the electrostatic  eld potential are expanded
similarly:

u�x,t;��� �
k�0

P

uk�x,t ��k���, �21�

c�x,t;��� �
k�0

P

ck�x,t ��k���, �22�

��x,t;��� �
k�0

P

�k�x,t ��k���. �23�

Using the orthogonality of the basis functions, the coef -
cients Dk , uk(x,t), ck(x,t), and �k(x,t) can be calculated
by a projection operation onto the PC basis. Thus, for Dk

Dk�
��kD�

��k
2�

, �24�

where the expectation is de ned as

� f ��
1

�2��N/2�RN
f ��1 ,�2 , . . . ,�N�

�exp��
� i�1

N � i
2

2 �d�1d�2•••d�N . �25�

Note that the expectations ��k��0 for k�0. Therefore the
zeroth-order spectral mode for each  eld quantity represents
the mean  eld, whereas the higher order modes represent the
variation, or uncertainty, around this mean. This is re ected
in the calculation of the standard deviation � of a quantity, as
shown below for the concentration c:

�c
2���c��c��2�

�� � �
j�1

P

c j� j� � �
k�1

P

ck�k� �
��

j�1

P

�
k�1

P

c jck�� j�k�

� �
k�1

P

ck
2��k

2� . �26�

To further interpret this, consider the example of a second-
order PC expansion for the concentration c in the case of two
uncertain parameters:

c�c0�c1�1�c2�2�c3��1
2�1 ��c4�1�2�c5��2

2�1 �.
�27�

In Eq. �27�, the �1 dimension corresponds to the  rst uncer-
tain parameter in the system, and �2 corresponds to the sec-
ond uncertain parameter. Substituting this expression into
Eq. �26� and evaluating the ��k

2�, we obtain the following
equation for the variance of c in this example:

�c
2�c1

2�c2
2�2c3

2�c4
2�2c5

2. �28�

Grouping the terms that correspond to the same stochastic
dimensions, it is possible to identify the contributions of in-
dividual parameters to this overall standard deviation:

�c
2��1

2��12
2 ��2

2, �29�

�1��c1
2�2c3

2, �30�

�12��c4
2, �31�

�2��c2
2�2c5

2. �32�

In these expressions, �1 and �2 represent the individual con-
tributions of the  rst and second uncertain parameters, re-
spectively, to the overall uncertainty in c. The term �12 rep-
resents a coupled term involving the combined effect of the
two parameters. This feature of the PC methodology is very
powerful, as it allows identi cation of the major contribu-
tions to the uncertainty in the simulation output and model
results.

After representing all model parameters and solution
 elds with PC expansions, those expansions are substituted
into the transport equations for the deterministic quantities.
Evolution equations for the unknown coef cients in the PC
expansions are then obtained by a Galerkin approach. For
example, consider the momentum equation. Substituting the
appropriate PC expansions for velocities, pressure, and vis-
cosity in Eq. �2�, multiplying by �k , and taking the expec-
tation gives23,24
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�uk

�t ��
i�0

P

�
j�0

P

Ci jk�ui"��uj

���pk��
i�0

P

�
j�0

P

Ci jk� i�
2uj �33�

with Ci jk��� i� j�k�/��k�k�. Similarly, the equations for
the modes cm ,k of the species concentration �with m the spe-
cies index� become

�cm ,k

�t ��
i�0

P

�
j�0

P

Ci jk�"�cm ,i�uj�um , j
e ��

��
i�0

P

�
j�0

P

Ci jk�"�Dm ,i�cm , j��ŵm ,k , �34�

where

um , j
e �

�� jue�

�� j
2�

� �
k�0

P

�
i�0

P

Cki j�kzF�� i, �35�

ŵm ,k�
��kŵ�

��k
2�

. �36�

Equations �35� and �36� represent the pseudo-spectral projec-
tion of the electrophoretic velocities and the stochastic
chemical source terms onto the �k basis functions �see also
Sec. IV F�. Finally, the electrostatic  eld equation �16� be-
comes

�
i�0

P

�
j�0

P

Ci jk�"�� i�� j�

��F�
m

zm�
i�0

P

�
j�0

P

Ci jk�"�Dm ,i�cm , j�. �37�

The modes � i of the electrical conductivity are obtained
from

� i�F2�
m

zm
2 �

j�0

P

�
k�0

P

C jki�m , jcm ,k . �38�

Equations �33�, �34�, and �37� each represent a set of P�1
coupled equations to be solved for the mode strengths uk ,
cm ,k , and �k , k�0, . . . ,P . With M species, the total num-
ber of equations to be solved is (M�2)(P�1).

IV. IMPLEMENTATION

A. Data structure

As described in Sec. II B, species concentrations are in-
tegrated differently, based on whether or not they take part in
equilibrium reactions. For instance, for components of weak
acids or bases, which typically serve as buffers, only the
combined concentration of all components is integrated di-
rectly. The total charge associated with the buffer compo-
nents is required for the enforcement of the electroneutrality
equation �14�. For a given buffer, this total charge can be
obtained from the total buffer concentration � and �H��
through buffer-speci c equations such as Eqs. �11� and �12�.

To make the treatment of weak acids or bases as general
as possible, separate objects are used in the current code to
represent these components. Each object contains all the spe-
cies properties for the weak acid or base it represents, as well
as the dissociation constants for the electrolyte reactions be-
tween its species. Speci c functions are also associated with
each object to return the total charge or other information
about the weak acid or base, given its total concentration and
�H�� . This way, different buffers can be included in the
simulations by simply including different objects, without
the need for speci c code modi cations.

B. Spatial discretization

The computational domain is discretized using a Carte-
sian mesh with uniform cell size �x and �y in the x and y
direction, respectively. Vector  elds, such as the velocity and
the electrostatic  eld strength, are de ned on the cell faces.
Scalar  elds, such as pressure and species concentrations, are
de ned at the cell centers. Spatial derivatives are discretized
with second-order central differences.

C. Electroneutrality

As explained in Sec. II B, the individual concentrations
of the buffer ions and �H�� are obtained from the electro-
neutrality condition �14�. This results in a set of nonlinear
algebraic relations between P�1 stochastic modes. This
coupled nonlinear system of equations is iteratively solved at
each point in the domain, using a Newton solver from the
NITSOL package.25 The solver uses an inexact Newton
method with backtracking. Using the solution from the pre-
vious time step as initial guess, the convergence is generally
very fast.

D. Electrostatic field strength

To obtain the electrostatic  eld potential � , the set of
P�1 equations �37� needs to be solved over the domain.
Since these equations are coupled, an iterative solution
method was developed, consisting of Gauss–Seidel iterations
over the spatial dimensions in combination with SOR itera-
tions over the stochastic dimensions. To accelerate the con-
vergence speed, spatial coarsening with a multigrid approach
is applied. The electrostatic  eld strength is computed in turn
as the gradient of the electrostatic potential.

E. Time integration

The time integration algorithm in this work is based on a
previously developed stochastic projection method for the
momentum equations in low-Mach-number  ow .24 This mo-
mentum solver uses a time splitting approach in which the
convection and diffusion terms are integrated in a  rst frac-
tional step, and the continuity constraints are then enforced
in a pressure projection step.26 Since the continuity
constraints �Eq. �1�� are decoupled in the stochastic dimen-
sion, this leads to a set of P�1 decoupled Poisson problems.

In the current work, this method is expanded to the in-
tegration of the coupled momentum and species transport
equations, in combination with the electrostatic  eld solu-
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tion. For brevity, the equations for the stochastic mode k of
the species concentrations and the velocity can be written as

�ck

�t ��Cspk�Dspk�Sspk , �39�

�uk

�t ��Cmk�Dmk��pk �40�

where Cspk , Dspk , and Sspk represent the convection, dif-
fusion, and chemical source terms in the species equation
�34�. Similarly, Cmk and Dmk represent the convection and
diffusion terms in the momentum equation �33�. Using the
projection scheme for momentum, in combination with a
Runge–Kutta �RK� time integration scheme, Eqs. �39� and
�40� are discretized between tn and the RK stage time level
t (s)�tn��t (s) as

ck
(s)�ck

n

�t (s) ��Cspk
(s�1)�Dspk

(s�1)�Sspk
(s�1)

�Fspk
(s�1) , �41�

uk
(s),*�uk

n

�t (s) ��Cmk
(s�1)�Dmk

(s�1)�Fmk
(s�1) , �42�

uk
(s)�uk

(s),*
�t �s � ���pk

(s) , �43�

where Fspk and Fmk represent the full right-hand sides in
the corresponding time integration steps. Equation �43� is the
pressure correction step, which requires the pressure to be
solved for  rst. The equation for pressure is obtained by
substituting Eq. �43� into the stochastic form of the continu-
ity equation for u(s),

�"uk
(s)�0 �44�

resulting in the following set of Poisson equations:

�2pk
(s)��

1
�t �s � �"uk

(s),* k�0, . . . ,P . �45�

As discussed in Ref. 24, these P�1 Poisson equations are
decoupled; therefore, each can be solved individually using
existing Poisson solvers for deterministic  ow problems. In
the current work, the same fast Fourier transform based  ow
solver is used as in Ref. 24.

The time integration of Eqs. �41� and �42� is performed
using the four-stage, fourth order Runge–Kutta scheme
�RK4�,27 which was selected because of its good stability for
convection dominated problems. Keeping in mind the cou-
pling between the equations, the computations during the
subsequent stages of the RK4 integration over a time step �t
from time tn to tn�1�tn��t can be represented with the
following pseudo-code. The superscripts �s� denote the
Runge–Kutta stage number. For clarity, the subscripts for the
mode strength k have been dropped.

Stage s�1; t�tn.
Calculate the right hand sides in Eqs. �41� and �42� using

the species concentrations, velocities and electrostatic  eld
strength at time t�tn:

• Fsp (1)�Fsp(c(tn),u(tn),E(tn)),
• Fm (1)�Fm(u(tn),uw(tn)) where uw is the electroosmotic

wall velocity.

Stage s�2,3,4; t�tn��t (s).
Update species concentrations to the current time level:

• c (s)�c(tn)��t (s)Fsp (s�1) for all directly integrated spe-
cies.

• Solve electroneutrality constraint to obtain �H�� (s).
• Update concentrations of weak acids and/or bases.

Update electrostatic  eld strength and velocity boundary
conditions using the updated concentrations:

• E(s)�E(c (s)) .
• uw

(s)�uw(c (s),E(s)) .

Update velocities to the current time level:

• Update the velocities to their intermediate (*) values at the
current time level: u(s),*�u(tn)��t (s)Fm (s�1).

• Apply the boundary conditions uw
(s) to the u(s),* velocity

 eld.
• Solve for pressure at this time level using Eq. �45�:

p (s)�p(u(s),*).
• Apply the pressure correction to u(s),* to obtain u(s):

u(s)�u(s),*��t (s)�p (s).

Calculate the new right hand sides in Eqs. �41� and �42�
using the updated species concentrations, velocities, and
electrostatic  eld strength:

• Fsp (s)�Fsp(c (s),u(s),E(s)) ,
• Fm (s)�Fm(u(s),uw

(s)) .

Final update to time tn�1�tn��t .
Update species concentrations to tn�1:

• c(tn�1)�c(tn)��t( 1
6Fsp (1)� 2

6Fsp (2)� 2
6Fsp (3)

� 1
6Fsp (4)) for all directly integrated species.

• Solve electroneutrality constraint to obtain �H�� at tn�1.
• Update concentrations of weak acids and/or bases.

Update electrostatic  eld strength and velocity boundary
conditions using the updated concentrations:

• E(tn�1)�E(c(tn�1)),
• uw(tn�1)�uw(c(tn�1),E(tn�1)).

Update velocities to tn�1:

• Update the velocities to the intermediate (*) values at
tn�1: u*(tn�1)�u(tn)��t( 1

6Fm (1)� 2
6Fm (2)� 2

6Fm (3)

� 1
6Fm (4)).

• Apply the boundary conditions uw(tn�1) to the u*(tn�1)
velocity  eld.
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• Solve for pressure at tn�1 using Eq. �45�: p(tn�1)
�p(u*(tn�1)).

• Apply the pressure correction to u*(tn�1) to obtain
u(tn�1): u(tn�1)�u*(tn�1)��t�p(tn�1).

In the above integration scheme, the respective time
steps �t (s) of the Runge–Kutta stages s�2, 3, and 4 are
given by 1

2�t , 1
2�t , and �t .

F. Tools for stochastic operations: Uncertainty
quantification toolkit

As explained in Sec. III, the governing equations for the
spectral mode strengths of the  eld variables are obtained by
substituting the PC expansions for those  eld variables in
their original, deterministic governing equations. Instead of
explicitly writing out these equations for the spectral mode
strengths, it is also possible to retain the governing equations
in their original form, but take into account during the imple-
mentation that all arithmetic needs to be performed on sto-
chastic instead of deterministic variables.

To facilitate this approach, we developed an uncertainty
quanti cation �UQ� toolkit which contains subroutines to
perform most of the common operations on stochastic vari-
ables that are represented by PC expansions. Using this tool-
kit, many algorithms that were originally designed for deter-
ministic problems can easily be converted for stochastic
computations by merely replacing mathematical operators
with calls to their stochastic equivalent. The details of some
of these operations are explained in the following.

Aside from additions, one of the most common opera-
tions is the multiplication of two stochastic variables. Con-
sider two stochastic variables, u and v , with the following
PC representations:

u��
i�0

P

ui� i , �46�

v��
j�0

P

v j� j . �47�

We need to  nd the modes wk in the PC representation of
w�uv:

w� �
k�0

P

wk�k . �48�

As mentioned before, these coef cients are obtained by us-
ing the orthogonality property of the PC basis functions:

wk��
i�0

P

�
j�0

P

Ci jkuiv j , k�0, . . . ,P �49�

with

Ci jk�
�� i� j�k�

��k
2�

. �50�

Since the tensor Ci jk is a function of the PC basis functions
only, it only needs to be calculated once during a preprocess-
ing step and can then be stored for use throughout the com-

putations. The implementation of Eq. �49� also takes advan-
tage of the fact that this tensor is sparse, reducing the amount
of storage and CPU time needed.

A similar procedure could also be used to determine the
PC expansion for the product of three stochastic variables
g�uvw . This would give the spectral coef cients gl as

gl��
i�0

P

�
j�0

P

�
k�0

P

Di jkluiv jwk , l�0, . . . ,P , �51�

where

Di jkl�
�� i� j�k� l�

�� l
2�

. �52�

Instead of this pure spectral approach, however, a pseudo-
spectral approach is used in this work to calculate products
such as g�uvw by repeated use of the regular product func-
tion. First the product uv is calculated with Eq. �49�, and the
result of this multiplication is multiplied in the same way
with w to give the PC expansion for g. The advantage of this
pseudo-spectral approach is that it does not require the evalu-
ation and storage of the fourth-rank tensor Di jkl , is more
ef cient, and is easy to generalize to products of any number
of variables. Some aliasing errors are introduced though in
this approach, but they were found to be negligible as long as
the order of the PC expansions is chosen suf ciently high.

Another frequent operation is the calculation of the in-
verse of a stochastic quantity. To explain how this operation
is implemented, consider again three stochastic variables, u,
v , and w, with their respective PC expansions given by Eqs.
�46�–�48�. If we wish to calculate u�w/v , then this implies
w�uv , which is given by Eq. �49�. This equation, assuming
the modes wk and v j are known, represents a system of P
�1 linear equations in the unknown modes ui . Since it is a
sparse system of equations, it is solved ef ciently in this
work with a GMRES iterative solver, taken from the
SLATEC library.28

More challenging is the evaluation of nonpolynomial
functions of stochastic variables such as the exponential,
which will show up in the calculation of the protein labeling
reaction rate with Eq. �56�, or the logarithm in the calcula-
tion of pH. Currently, these operations are performed by ex-
panding them in Taylor series around the mean of the argu-
ment. For example, the exponential of a stochastic quantity
u, with a PC expansion given by Eq. �46�, is computed as

eu�eu0� 1� �
n�1

N dn

n! � , �53�

where

d�u�u0��
i�1

P

ui� i �54�

is the stochastic part of u. The powers dn are again calculated
in a pseudo-spectral way with the product formula �49�, as
dn�d dn�1, with dn�1 known from the previous term in the
Taylor series. The number of terms N in this truncated series
is chosen adaptively to satisfy a given tolerance level.
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The Taylor series approach works reasonably well as
long as the uncertainties in the  eld variables are moderate
and the probability density functions �PDFs� of those vari-
ables are not too skewed. For highly skewed PDFs, however,
high order PC expansions are required to capture this sto-
chastic information, and the evaluation of high power terms
dn in the Taylor series can become inaccurate. A new ap-
proach, based on integrations, is currently under develop-
ment to alleviate this problem.

All the operations described above, among many others,
have been implemented in the UQ toolkit library. The UQ
toolkit greatly facilitates the development of stochastic solv-
ers from scratch, as well as the conversion of existing deter-
ministic routines into stochastic ones. A more general and
effective approach would be to develop the capability to au-
tomatically convert existing deterministic programs to sto-
chastic arithmetic. As an extension of the UQ toolkit meth-
odology, this could conceptually be achieved by creating a
new data type for variables represented with PC expansions,
and then overloading operators to perform the proper sto-
chastic operations on these variables where needed. Such an
approach is outside the scope of this paper but will be ex-
plored elsewhere.

V. NUMERICAL RESULTS

A. Test system

This section presents some results of test problems illus-
trating the spatial and temporal convergence properties of the
developed code. Figure 2 shows the geometry considered for
these test problems, consisting of a rectangular microchannel
in which a protein U and dye D react to form a labeled
protein L. An external electrostatic potential is applied across
the system to generate an electroosmotic  ow in the x direc-
tion. The unlabeled protein U has a charge of �1 versus a
charge of �1 for the dye D, so electrophoresis will move U
forward and D backward, relative to the bulk  ow . For all
cases simulated in this work, an aqueous potassium phos-
phate (KH2PO4) buffer solution is considered. Therefore, the
species in the solution are the proteins U and L, the dye D,
the electrolytes H�, OH�, K� as well as the components of
phosphoric acid H3PO4 , H2PO4

� , HPO4
2� , and PO4

3� .
As mentioned in Sec. II B, the proteins in this solution

are assumed to have a  xed charge and can therefore be
integrated with Eq. �5� with a chemical reaction source term
ŵ i according to a model irreversible labeling reaction

U�D→
kL

L. �55�

The rate constant kL in this reaction is pH dependent, given
by the following:

kL�kL
0�dLe�(pH�pH0)2/�pH

2
. �56�

The Gaussian dependence of this relationship on pH is based
on the shape of the measured pH-dependence of the rate of
production of the high- uorescence-ef ciency species from
the reaction of naphthalene-2,3-dicarboxaldehyde �NDA�
with amino acids in the presence of CN�.29 Unless stated
otherwise, the values for the reaction rate parameters are

chosen in this work as kL
0�0.25�106 mol�1 l s�1, dL

�2.15�106 mol�1 l s�1, pH0�7.40, and �pH�0.85. The
chemical source terms used in Eq. �5� are correspondingly

ŵU�ŵD��ŵL��kL�U��D� . �57�

The concentration of the K� ion, which is fully dissociated
and is a conserved quantity can also be integrated by Eq. �5�
directly �without a source term�. Phosphoric acid, however,
is a weak acid and will dissociate according to the following
electrolyte reactions:

H3PO4↔
K1

H��H2PO4
� , �58�

H2PO4
�↔

K2

H��HPO4
2� , �59�

HPO4
2�↔

K3

H��PO4
3� , �60�

where the Ki are the corresponding dissociation constants.
As discussed in Sec. II B, an equilibrium formulation is used
for these fast electrolyte reactions. Therefore, we consider
the total concentration of this weak acid

�a��H3PO4���H2PO4
����HPO4

2����PO4
3�� �61�

whose transport equation is obtained similarly to Eq. �10� by
adding up the transport equations for all the components in
�a so the dissociation reaction source terms disappear. The
concentrations of the individual components of �a are then
calculated as ci�� i�a , where the � i are calculated from the
equilibrium expressions for the dissociation reactions �58�–
�60� and can be written as a function of �H�� and the disso-
ciation constants only:

�H3PO4
�

�H��3

�H��3�K1�H��2�K1K2�H���K1K2K3
,

�62�

�H2PO4
��

K1�H��2

�H��3�K1�H��2�K1K2�H���K1K2K3
,

�63�

�HPO4
2��

K1K2�H��

�H��3�K1�H��2�K1K2�H���K1K2K3
,

�64�

FIG. 2. �Color� Geometry for the numerical test problems: a plug of protein
U and dye D are introduced in a rectangular microchannel and react to form
a labeled protein L.
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�PO4
3��

K1K2K3

�H��3�K1�H��2�K1K2�H���K1K2K3
.

�65�

As discussed in Sec. II A, Eq. �4� is used to model the de-
pendence of the zeta potential on pH and buffer molarity.
The concentration of the fully dissociated potassium ion,
�K�� , is used for the local buffer molarity M along the
walls. The temperature is assumed constant in this work,
with all species properties and reaction rate constants evalu-
ated at 298 K.

For the computations in this paper, all parameters and
 eld variables, were represented with third-order polynomial
chaos expansions. The highest order stochastic modes in the
expansions of the predicted  eld variables were signi cantly
lower than the lower order modes, indicating that the third-
order expansions were suf ciently accurate.

B. Convergence with grid spacing

To test the spatial convergence rate of the code, simula-
tions of the test case described above were run on a domain
with Lx�1 cm and Ly�0.25 cm. The potassium phosphate
buffer solution was initialized with a uniform concentration
of 10�3 mol/l and a pH of 7.25. The unlabeled protein U and
the dye D were initialized with a pro le, Gaussian in x and
uniform in y, both with a maximum concentration of 10�5

mol/l at x�4 mm and a width of 1 mm. The labeled protein
concentration was initialized to zero. The electrostatic poten-
tial difference �V between the inlet and exit of the domain
was set to 10 V, creating an average  eld strength of 0.01
kV/cm. An uncertainty of 1% was assumed in the mobilities
of both U and D, in the labeling rate parameter pH0 of Eq.
�56�, and in the potential difference �V . Using third order
polynomial chaos expansions, these four uncertain param-
eters led to four stochastic dimensions with a total of P�1
�35 stochastic modes.

Four runs were performed, with uniform grid spacings in
x and y doubling between each run, from 3.91�10�5 m in
the  nest grid to 3.13�10�4 m in the coarsest grid �corre-
sponding, respectively, to 256�64, 128�32, 64�16, and

32�8 cells in x�y). Each run used the same time step of
10�4 s for a total of 200 time steps. Figure 3 shows the L2

norm of the difference between the solutions for the stream-
wise velocity u as well as several species concentrations at
successive grid spacings. To monitor the spatial convergence
of the full stochastic solution, the L2 norm was calculated
over all points in space and all P�1 stochastic modes.
Clearly, the slope of the curves in Fig. 3 shows an overall
second-order convergence rate with grid spacing, consistent
with the spatial differencing scheme used.

C. Convergence with time step

The temporal convergence behavior of the code was
studied with a similar test case as in the previous section.
Referring to Fig. 2, the domain sizes were chosen as Lx�2
cm and Ly�0.25 cm. The buffer initialization was the same
as in the previous case. For the unlabeled protein U and the
dye D, however, the peak concentrations were raised to 10�4

mol/l, located at x�4 mm and x�6 mm, respectively. The
electrostatic potential difference �V across the domain was
set to 2000 V, giving an average  eld strength of 1 kV/cm. A
slightly higher uncertainty of 2% was assumed in the mobili-
ties of both U and D, the parameters pH0 and �V , as well as
the bulk kinematic viscosity. These  ve stochastic dimen-
sions with third-order polynomial chaos expansions led to a
total of P�1�56 stochastic modes.

This test case was run for a total time of 0.5 s, with  ve
different time steps, ranging in factors of 2 from 6.25
�10�4 s up to 1.00�10�2 s. In each case, the number of
cells was 128�16 in x�y . Figure 4 shows the L2 norm of
the difference between the solutions for the streamwise ve-
locity u as well as several species concentrations at succes-
sive time steps. The fourth-order temporal convergence rate
observed in Fig. 4 is consistent with the Runge–Kutta
scheme used in the time integration.

VI. PROTEIN LABELING IN A HOMOGENEOUS
BUFFER

To illustrate the stochastic uncertainty quanti cation
methodology, this section describes protein labeling in a

FIG. 3. L2 norm of the difference between solutions on successive grids as
a function of the  ne grid spacing dx f . The slope of the lines shows a
second-order spatial convergence rate for various species concentrations as
well as the streamwise velocity.

FIG. 4. L2 norm of the difference between solutions at successive time steps
as a function of the shorter time step dt . The slope of the lines shows a
fourth-order temporal convergence rate for various species concentrations as
well as the streamwise velocity.
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simple homogeneous system. Figure 5 shows the time evo-
lution of the concentrations of the unlabeled and labeled pro-
tein in a homogeneous potassium phosphate buffer at a pH of
8.25. In this problem, the dye D was assumed to be present
in abundance so that the source term for the labeled protein
in Eq. �5� can be written as

ŵL�kL�U� . �66�

The same expression as before, Eq. �56�, was used for the
reaction rate, but with the following parameters: kL

0�0.25
�10�3 s�1, dL�2.15 s�1, pH0�9.25, and �pH�0.85. Both
proteins U and L, as well as the dye D were assumed to have
no charge, and therefore the buffer equilibrium and pH did
not change with time. For this simulation, a standard devia-
tion of 1% was assumed for all parameters in the rate expres-
sion �56�, as well as for the electrolyte dissociation constants.
Third order PC expansions were used.

The resulting uncertainty in the protein concentrations is
indicated in Fig. 5 with ‘‘error bars’’ that span the �3�
range, where � indicates the standard deviation. Clearly, un-
certainty in the input parameters causes large uncertainties in
the simulated concentrations. At the point where �U��0.5, a
standard deviation of 1% in the parameter pH0 is magni ed
about 16 times in the standard deviation of �U� .

Note that after about 3 s, the range of the �3� ‘‘error
bars’’ becomes so large that it seems to include concentra-
tions for U that are negative, which is clearly not physically
possible. However, the interval �3� around the mean value
properly represents the full range of possibilities for a certain
variable only when its probability density function is Gauss-
ian, and therefore symmetric. Figure 6 shows the probability
density function of �U�, generated from its PC expansion at
various points in time. When the mean value of �U� is suf -
ciently far away from zero, this PDF has a Gaussian shape.
However, for mean values of �U� closer to zero, the PDF
becomes narrower and more skewed. This predicted uncer-
tainty properly re ects the physical system behavior where
all unlabeled protein reacts away, but its concentration can
not be negative.

VII. PROTEIN LABELING IN A TWO-DIMENSIONAL
MICROCHANNEL

In this section, the simulation and uncertainty quanti -
cation code is used to tackle a more physically challenging
problem of protein labeling in a two-dimensional microchan-
nel. The problem setup is similar to the numerical test prob-
lems described in Sec. V. The labeling reaction is the same as
Eq. �55� with the reaction rate kL and the corresponding
source terms as in Eqs. �56� and �57�. Again, a charge of �1
is assumed for the unlabeled protein U and a charge of �1
for the dye D, resulting in a neutral labeled protein L.

Referring to Fig. 2, a microchannel was considered with
a length Lx�1 cm and a height Ly�1 mm. The potassium
phosphate buffer solution was initialized with a uniform con-
centration of 10�3 mol/l and a pH of 7.25. The Gaussian
pro les for the initial U and D concentrations had peak con-
centrations of 10�4 mol/l, located at x�2.5 mm and x�4
mm, respectively, and a width in x of 0.75 mm. The electro-
static potential difference �V across the domain was set to
1000 V, giving an average  eld strength of 1 kV/cm. An
uncertainty of 1% was assumed in the mobility of U, in the
labeling rate parameter pH0 , the dissociation constant K2 ,
and the potential difference �V . Third-order polynomial
chaos expansions were used in the computations with a total
of 35 stochastic modes. The time step was set to 2�10�4 s
and the domain was discretized with 512�32 cells in x and
y.

Figure 7 shows a contour plot of the mean concentra-
tions of the proteins and dye at t�0.12 s. At this point in
time, the plugs of U and D have just met at x�4 mm, and
labeled protein is generated at the interface. Note that the
labeling reaction is fast compared to the electroosmotic and
electrophoretic transport. Consequently, U and D react as
soon as they meet, resulting in almost no overlap between
the U and D pro les, and a sharp pro le for L. Since L is
neutral, it travels with the bulk convective velocity, which is
the average of the total convective velocities of U and D.
Therefore the peak value of L is always located at the inter-
face of U and D, and since L is generated in that same area,

FIG. 5. Time evolution of U and L concentrations in a homogeneous protein
labeling reaction. The uncertainty in these concentrations, due to a 1% un-
certainty in the labeling reaction rate parameters, is indicated by �3� ‘‘er-
ror bars.’’

FIG. 6. PDF of the unlabeled protein concentration at different mean values.
As the unlabeled protein reacts away, its PDF becomes narrower and more
skewed.
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its peak concentration will keep increasing. At t�0.12 s , the
peak concentration for L is 1.3�10�4 mol/l, which is al-
ready higher than the peak concentrations of 9.4�10�5 mol/l
for U and D.

The standard deviations in the concentrations of Fig. 7
are given in Fig. 8. The highest uncertainties appear in the
reaction zone at the interface between U and D, with a maxi-
mum coef cient of variation of about 20% in the L concen-
tration. Even though Fig. 8 only shows the overall uncer-
tainty in the concentrations, a strong feature of the PC
formalism is that the contributions of the uncertainty in in-
dividual parameters to this overall uncertainty can easily be
retrieved, as explained in Sec. III. Figure 9, for example,
shows the contributions from each of the four uncertain input
parameters to the standard deviation of the L concentration,
in the area around the reaction zone, at y�0.5 mm. These
contributions were obtained with a similar analysis as in Eqs.
�27�–�32�, but for the case of four stochastic dimensions and
third-order PC expansions. The total standard deviation of
�L� is given by the curve labeled ‘‘all’’ in this  gure. This
overall standard deviation has a pro le with a double peak,
which for a single peak mean species pro le, is characteristic
of uncertainty caused by the convection velocity. When a
single peak species pro le is transported by an uncertain
convection velocity, the uncertainty in the position of the
peak at a given point in time will cause the most variability
at the sides of the peak, where the pro le has a steep slope in
the x direction. At the top of the pro le, there is no concen-
tration gradient and uncertainties in peak position cause little
uncertainty in the observed concentrations at that location.

As indicated by the curve labeled ‘‘�V ,’’ the uncertainty
in the applied electrostatic  eld potential has the most domi-
nant contribution to the overall standard deviation. Since
both the electroosmotic and electrophoretic velocities are di-
rectly proportional to �V , the uncertainty caused by this
parameter naturally shows a double peak, characteristic of
convection velocity uncertainty. Similarly, the parameter �U
affects the electrophoretic transport of the reactant U and its
resulting contribution to the standard deviation of �L� also
has a double peak, albeit smaller than the �V contribution.

The contribution of parameter pH0 also shows a double
peak, but with its center located on the left side of the �L�
pro le, where the gradient of �L� in x is very steep. The
steepness of the �L� pro le in that area is largely determined
by the speed of the labeling reaction compared to the con-
vection speed, with a faster reaction rate leading to a sharper
increase in �L�. With the pH in this area between 7.0 and 7.1
�not shown�, Eq. �56� predicts signi cant variability in kL for
changes in pH0 . So the uncertainty in pH0 mainly affects the
slope of the �L� pro le on the left side, consistent with the
observed contribution of parameter pH0 in Fig. 9.

Figure 9 further shows more minor contributions, from
the dissociation parameter K2 and from the coupled terms.
Even though their contribution is small in this case, those
coupled terms are interesting from a theoretical point of
view, as they represent coupled effects of independent pa-
rameters. In the current  gure, those terms represent the sum
of three different coupled effects: the coupled effect of �V
and �U , of �V and pH0 , and of �V and K2 .

As time goes on and the U and D plugs cross each other,
nearly all U and D are consumed in the labeling reaction. At
t�0.50 s, only labeled protein L remains, with its mean con-
centration and standard deviation as shown in Fig. 10. The
maximum mean concentration of L at this point in time is
2.4�10�4 mol/l in the center of the channel, and about 3.2
�10�4 mol/l near the walls. So the L concentration is up to
three times as large as the initial U and D concentrations.
The standard deviation in L, as shown in the bottom plot of
Fig. 10, is very large near the wall, with maximum values up
to 10�4 mol/l and coef cients of variation up to 100%.
Again, the standard deviation in �L� exhibits the double peak
near the centerline, which is characteristic of uncertainty
caused by the convection velocity.

What is particularly signi cant though, is the major dis-
tortion of the L plug, as opposed to the straight pro le ob-
served at early times. This distortion is caused by the distur-
bance of the buffer electrolyte, in response to the movement
and annihilation of the charged protein U and the dye D. To
explain why this is physically happening, consider Fig. 11,
which shows the mean and standard deviation of the electri-
cal conductivity � of the electrolyte solution at t�0.50 s.
Because two charged molecules are used up for every new
labeled protein, the area around the L plug has a reduced
concentration of ions, with a mean electrical conductivity of
almost a third lower than in the undisturbed buffer. Upstream
of the L plug, the electrical conductivity shows some smaller
 uctuations, which stem from shifts in the buffer equilib-
rium. Since the buffer ions are primarily negatively charged,
those disturbances travel slower than the labeled protein
plug. The bottom plot of Fig. 11 shows that the highest un-
certainties in the electrical conductivity are found around the
L plug, near the center and especially at the walls.

The large spatial variations in the electrical conductivity
in turn cause nonuniformities in the electrical  eld strength,
as shown in Figs. 12 and 13. Near the L plug, the mean
electrostatic  eld strength in the x direction reaches a value
up to 40% higher than in the undisturbed  ow . This increase
strongly affects the local electroosmotic and electrophoretic
velocities, causing an increased wall velocity, leading to the
observed distortion of the L plug. The largest uncertainties
are again found near the L plug, with maxima up to 10%.
Even though the initial  eld strength in the y direction was
zero, Fig. 13 shows that this y component is quite signi cant
at t�0.50 s. The magnitude of this  eld strength is up to
15% of the initial, streamwise electrostatic  eld strength for
the mean value. Even though this y component does not af-
fect the electroosmotic  ow velocity directly, it does provide
electrophoretic ion transport in the wall-normal direction,
which can further distort sample pro les.

As indicated by Eq. �3�, the electroosmotic wall velocity
depends on both the local electrostatic  eld strength and 	
potential, which in turn depends on the pH and the buffer
molarity, as modeled by Eq. �4�. Since all these variables are
disturbed by the charged protein movement and annihilation,
the electroosmotic wall velocity varies in the streamwise di-
rection. These wall velocity changes in turn cause pressure
gradients and local recirculation zones, as indicated by the
velocity  elds in Figs. 14 and 15. Figure 14 shows the
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FIG. 7. �Color� Mean concentrations of proteins U, L, and dye D at t
�0.12 s. U and D just met and L is produced at their interface. The values
of the contour levels go linearly from 0 �blue� to 1.3�10�4 mol/l �red�. In
this  gure, as well as in all subsequent contour plots, the full physical
domain is shown, from 0 to 1 cm in x and from 0 to 1 mm in y.

FIG. 8. �Color� Standard deviation of the protein and dye concentrations at
t�0.12 s. The values of the contour levels go linearly from 0 �blue� to
1.1�10�5 mol/l �red�. The largest uncertainties are found in the reaction
zone.

FIG. 9. Major contributions of individual input parameters to the overall
standard deviation in �L� in the area around the reaction zone at t�0.12 s,
y�0.5 mm. The uncertainty in the applied voltage potential ‘‘�V’’ has the
most dominant contribution to the overall standard deviation in �L�.

FIG. 10. �Color� Mean �top� and standard deviation �bottom� of the labeled
protein concentration L at t�0.50 s. The initially  at pro les are now se-
verely distorted. The values of the contour levels go linearly from 0 �blue� to
3.2�10�4 mol/l �red� in the top plot and from 0 �blue� to 10�4 mol/l �red�
in the bottom plot.

FIG. 11. �Color� Mean �top� and standard deviation �bottom� of the electri-
cal conductivity of the electrolyte solution at t�0.50 s. Annihilation of ions
in the labeling reaction results in a signi cantly lower mean electrical con-
ductivity near the L plug. The values of the contour levels go linearly from
7.1�10�3 S/m �blue� to 1.3�10�2 S/m �red� in the top plot and from 0
�blue� to 1.5�10�3 S/m �red� in the bottom plot.

FIG. 12. �Color� Mean �top� and standard deviation �bottom� of the electri-
cal  eld strength in the x direction at t�0.50 s. Near the L plug, the mean
streamwise electrical  eld strength is about 40% higher than in the undis-
turbed  ow . The values of the contour levels go linearly from 91.4 kV/m
�blue� to 146 kV/m �red� in the top plot and from 0.20 kV/m �blue� to 13
kV/m �red� in the bottom plot.

FIG. 13. �Color� Mean �top� and standard deviation �bottom� of the electri-
cal  eld strength in the y direction at t�0.50 s. The magnitude of the mean
of this  eld strength is up to 15% of the initial  eld strength in the x
direction. The values of the contour levels go linearly from �16.3 kV/m
�blue� to 16.3 kV/m �red� in the top plot and from 0 �blue� to 5.8 kV/m �red�
in the bottom plot.

FIG. 14. �Color� Mean �top� and standard deviation �bottom� of the stream-
wise velocity at t�0.50 s. The local increase in the electroosmotic wall
velocity leads to recirculation zones near the L plug. The largest uncertain-
ties are found near the wall. The values of the contour levels go linearly
from 6.8 mm/s �blue� to 9.1 mm/s �red� in the top plot and from 5.6
�10�3 mm/s �blue� to 0.59 mm/s �red� in the bottom plot.

FIG. 15. �Color� Mean �top� and standard deviation �bottom� of the wall-
normal velocity at t�0.50 s. The mean of this velocity has a magnitude of
up to 6 % of the initial streamwise velocity. The values of the contour levels
go linearly from �0.56 mm/s �blue� to 0.56 mm/s �red� in the top plot and
from 0 �blue� to 0.26 mm/s �red� in the bottom plot.
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streamwise velocity  eld, which has a mean wall velocity
that is up to 20% higher near the L plug. The wall-normal
velocity  eld shows positive and negative velocities near the
L plug, with magnitudes up to 6% of the initial streamwise
velocity.

Clearly, the recirculation zones in the  ow  eld will dis-
tort initially  at sample pro les. This increases the hydrody-
namic dispersion, on top of the electrokinetic dispersion
caused by nonuniformities in the electrophoretic transport.

VIII. CONCLUSIONS

In this paper, a detailed physical model for microchannel
 ows was presented to study protein labeling reactions in an
electrolyte buffer. The model incorporates the coupled nature
of momentum transport, species transport, and the electro-
static  eld as well as a full representation of the electrolyte
buffer reactions and the dependence of the 	 potential on the
local buffer properties. A stochastic uncertainty quanti ca-
tion method was developed to propagate uncertainty from
the input parameters in the model to the simulation results,
using polynomial chaos expansions for the uncertain model
parameters and  eld variables.

Application of the model was illustrated in light of simu-
lations of protein labeling reactions in homogeneous systems
as well as two-dimensional electroosmotically driven micro-
channel  ows. For the two-dimensional case, the simulation
showed the impact of ion movement and subsequent buffer
disturbances on the electrokinetic and hydrodynamic disper-
sion of sample plugs in the channel. The uncertainty in the
results was primarily due to uncertainty in the applied volt-
age across the channel, with smaller contributions from the
parameters in the labeling reaction rate as well as species
properties.

Overall, the detailed physical model that was imple-
mented in this work, allows the simulations of microchannel
 ows providing in-depth understanding of the transport and
dispersion of protein sample plugs. In combination with this
model, the stochastic uncertainty quanti cation method pro-
vides a powerful way to assess the impact of uncertain model
input parameters on the uncertainty of the simulation results.
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Abstract—A numerical study of band-crossing reactions is con-
ducted using a quasi-one-dimensional (1-D) computational model
that accounts for species bulk advection, electromigration veloci-
ties, diffusion, and chemical reaction. The model is used to simu-
late chemical reactions between two initially distinct sample zones,
referred to as “bands,” that cross each other due to differences
in electromigration velocities. The reaction is described in terms
of a single step, reversible mechanism involving two reactants and
one product. A parametric study is first conducted of the behavior
of the species profiles, and results are interpreted in terms of the
Damköhler number and of the ratios of the electromigration ve-
locities of the reactant and product. Computed results are then
used to explore the possibility of extracting forward and backward
reaction rates based on time resolved observation of integral mo-
ments of species concentrations. In particular, it is shown that in
the case of fast reactions, robust estimates can be obtained for high
forward rates, but that small reverse rates may not be accurately
observed. [934]

Index Terms—Binding kinetics, electrochemical processes, elec-
tropheretic band crossing, microfluidics, on-chip analysis.

I. INTRODUCTION

M ICROFLUIDIC devices have been successfully applied
to the analysis of chemical and biological systems.

These systems provide many advantages over the conven-
tional biochemical lab analysis, including improved speed
and reproducibility, greatly reduced reagent consumption and
fabrication cost [1]. Microfluidic devices have in particular
been used to quantify a variety of physical parameters [2],
including measurements of molecular diffusion coefficients [3],
enzyme reaction kinetics [4], [5], and fluid viscosity [6]. Other
applications include immunoassays [7]–[9], DNA analysis
[10], cell manipulation [11], and capillary electrophoresis [12].

One important class of microfluidic applications concerns
kinetic measurements, which provide concise rate expres-
sions that can be used to predict yield, optimize designs,
and to provide insight into relevant molecular processes. For
example, Hadd et al. [4] describe on-chip enzyme assay of
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Fig. 1. Schematic illustration of band-crossing reactions, showing the initial
structure of reactant bands A and B.

beta-galactosidase [4]. Their work clearly showed that the
utility of these devices can be extended from the concept
of only performing separations to the idea of integrating a
complete analysis system. Reagent mixing and transport were
accurately controlled by electrokinetic means. Enzyme reaction
kinetics were obtained by altering the substrate concentration
and measuring the product concentration. Similarly, Chiem et
al. [8] demonstrated an integrated immunoreactor with elec-
trophoretic separation for serum theophylline determination.
In this work, all operations required by the immunoassay like
mixing, incubation, separation and detection were automated
on the chip.

An important challenge in the design of high throughput
microfluidic systems concerns the relatively low diffusion
rates of many species of interest, particularly macromolecules.
Specifically, since characteristic lengthscales are small, the flow
is laminar and mixing is generally diffusion-limited, requiring
large times for substantial progress of chemical reactions.
Consequently, various efforts have been directed at enhancing
mixing rates in microfluid devices [13], [15]. Multilamina and
splitting techniques are common examples of mixer designs.
Mixing induced by lateral transport [13], [14] and electrokinetic
instability [15] have also been recently reported.

One attractive alternative to diffusion-controlled reaction
is electrophoretically mediated microanalysis (EMMA) [16],
[17], which we also refer to as the on-chip electrophoretic
band-crossing system [18]. As schematically illustrated in
Fig. 1, the setup consists of the simultaneous introduction of
two reactive species having different electrophoretic mobilities
into a microchannel. The flow is then driven electrokinetically
so that the species with the higher electromigration velocity
will cross and eventually overtake the one having slower elec-
tromigration velocity. Thus, the mixing times are controlled by
differences in electromigration velocities, and this distinguishes
the present technique from approaches based on fluid stirring,
where mixing times are diffusion limited. Since the reactant
bands have small width and the electromigration-limited
mixing rates are high, this enables rapid observations of fast
reactions. The band crossing technique is particularly useful in
situations where the fluorescent signal strength of a reaction
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product is low, and a substantial amount of reactants is conse-
quently required for a successful experiment. This in contrast
rapid mixing schemes which rely on thin lamination of reactant
streams in order to minimize diffusion times [19].

Mathematical [17], [20], [21] and computational [22], [23]
models describing the behavior of the EMMA experiments are
now well established. The present work builds on prior results
by 1) conducting a systematic analysis on the role of various
operating parameters such as electromigration velocities, reac-
tion rates and initial concentrations, 2) exploiting the results to
establish essential trends and to express these trends in terms
of a reduced set of dimensionless parameters, and 3) applying
the computations to explore the possibility of extracting kinetic
rate constants based on measurements of species concentration
profiles. As outlined in Section II, we rely on a quasi-one-di-
mensional (1-D) model that accounts for species advection and
electromigration, reaction and diffusion. Brief dimensional ar-
guments are then introduced in Section III in order to charac-
terize specific flow conditions. Section IV highlights selected
results from a detailed parametric study of the effects of reac-
tion rates, differences in electromigration velocities and initial
concentrations. An analysis of extraction rate methodologies on
basis of integral moments of concentration profiles is then pre-
sented in Section V. Major conclusions are summarized in Sec-
tion VI.

II. FORMULATION AND NUMERICAL SCHEME

As mentioned in the introduction, we rely on a quasi-1-D,
advection-diffusion-reaction design model. The formulation re-
flects the idealized situation of a dilute solution evolving in a
uniform, electrokinetically driven plug flow, and thus inherently
ignores dispersive effects that may arise due to unwanted ex-
ternal pressure differences, spatial variation in wall mobility, or
spatial variations in electrical conductivity. We consider the evo-
lution of three chemically interacting species using a first-order,
finite-rate, reversible reaction of the form

(1)

with a chemical rate term given by

(2)

where the denotes the rate of production, and denote the
forward and backward rates, respectively. The indexes and
denote the reactants while refers to the reaction product.

Under the idealized conditions outlined above, the conserva-
tion equations for the three reacting species can be expressed as
[23]

(3)

where , and denote the molar concentration, electromi-
gration velocity, and mass diffusivity of species , respectively.

In the computations presented in Section IV, (3) is simulated
using a finite difference scheme that is based on a cell-cen-
tered discretization of the concentration fields on a fine, uni-
form mesh of cell size . Spatial derivatives are approximated

using a second-order, centered-difference discretization, and the
discrete equations are advanced in time using the second-order
Adams–Bashforth scheme. Inflow/outflow conditions are used
at the left/right domain boundaries.

III. SCALE ANALYSIS

While the dimensional form of the governing equations is
used in the simulations, a brief scale analysis is conducted in
this section in order to characterize the solutions. As mentioned
earlier, the present study is motivated by a desire to determine
rates of reaction in a dilute solution involving proteins having
low molecular diffusion coefficients. Thus, molecular diffusion
effects are expected to be small, so that the rates of reaction are
dominated by electrokinetic and chemical time scales. (For the
presently considered regime, diffusion time scales are smaller
than crossing time scales by at least three orders of magnitude.)
Below, we provide estimates of these time scales, the ratio of
which yields a Damköhler number.

A. Electrophoretic Crossing Time Scale

Let denote the initial widths of species and (see Fig. 1).
The relevant time scale for band crossing may be estimated from

(4)

where . The convention we have adopted
is that species with electromigration velocity , is the faster
migrating species, which overtakes species having electromi-
gration velocity .

B. Chemical Time Scale

In order to derive a suitable chemical time scale, we will as-
sume for the moment that the crossing time is fast and conse-
quently consider that the two bands are brought together instan-
taneously. Thus, we focus on a quasi-0D problem where the ini-
tial mixture relaxes to equilibrium. In this limiting case, the rel-
evant concentrations are the initial peak concentrations and

.
An exact solution to this pure chemical problem can be de-

rived. Since this solution suggests an interesting diagnostic ap-
proach, a few details are provided. We use subscripts {1,2,3} to
denote species {A,B,C}. In the absence of transport, the gov-
erning equation for concentration reduces to

(5)

Let denote the amount of reactants consumed by the re-
action over the interval , and denote the steady-state or
equilibrium value of ; we have

(6)

Substitution of (6) into (5) yields

(7)

We will later discuss how (7) may be used to diagnose band-
crossing data.
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At steady state, we have , which gives

(8)

where , , and .
The solution is given by

(9)

Letting , we have

(10)

with initial condition . The exact solution is given by

(11)

where and .
As expected, vanishes at steady-state since , and this is
reflected in (11) above.

This suggests that an appropriate timescale, , for the reaction
is such that , which gives

(12)

Note that depends on the initial concentrations , and, if
initially present, .

Also note that the above definition of differs from the usual
definition of the chemical time scale based on the eigenvalues
of , the Jacobian of the chemical source term. For the present
reaction mechanism, we have

(13)

has a single nonvanishing eigenvalue ,
giving the following timescale:

(14)

which, unlike , does not depend on the initial concentration of
the product, . However, one can readily verify that for condi-
tions near equilibrium, and coincide; this agreement was
in fact behind the selection of the decay rate in . In the
analysis below, we will exclusively rely on the chemical time
scale definition in (12), as it accounts for the overall nonlinear
behavior of the system.

C. Damköhler Number

The estimates above enable us to define a Damköhler number

(15)

In order to control Da one can either alter the initial concen-
tration levels (i.e., control ), or change the electromigration
velocity (i.e., control ). The latter can be achieved either by
changing the electric field strength or, to the extent possible, by

altering and/or the mobility of individual species. Note, how-
ever, that the possibility of experimentally controlling and
is subject to constraints that limit the range of electromigration
velocities and the range of concentration values. For , the pri-
mary restriction comes from a limitation on the electric field,
which should not be so high as to cause significant Joule heating.
For , one needs to ensure that the concentration remains high
enough to fall within detection limits, but not so high as to re-
quire a highly concentrated initial mixture.

IV. BEHAVIOR OF SOLUTIONS

A detailed parametric study was conducted of the effects of
electromigration velocities, rate parameters, and initial reactant
concentrations. The effects of electromigration velocity were
analyzed by systematically varying . For each value of ,
a two-parameter family of solutions was considered, by setting

and . The parameter was varied in-
dependently, and for each , five values of were considered:
1) , where the electromigration velocity of the product
vanishes, 2) , i.e., the electromigration velocity of the
product is half that of the slower reactant , 3) ,
where , 4) , where ,
and 5) , where . Meanwhile, the initial concen-
trations of the reactants and the values of the rate constants were
also systematically varied. In all cases, the width of the initial
reactant bands, , was held fixed, with concentration profiles
described by sixth-order Gaussian profiles of the form

where is the initial peak concentration and is a shifted
spatial variable centered at the peak. The high-order Gaussian
was selected because it mimics a top-hat profile with smooth
tails, as can be appreciated from the results below. In all cases,

, the diffusivity , the initial
product concentration vanishes identically (i.e., ), and
the computational domain is 3-mm long. A systematic study
was also conducted of the effect of the discretization parameters.
This study showed that for range of parameters of interest, a fine
mesh with and a time step were
sufficient for accurate predictions. These values are used in the
computations presented below.

Selected cases from the detailed parametric study are pre-
sented in this section. As summarized in Table I, we focus our
attention on six cases. In cases 1–4, the electromigration ve-
locity of the reactants is held fixed, while that of the products is
varied. Thus, as shown in the table, the Damköhler number and

are held fixed, respectively and , while
is varied. In case 5, is increased to 0.5, resulting in a higher
Damköhler number . In case 6, the initial peak concen-
tration of the reactants is reduced, leading to a lower Damköhler
number .

Fig. 2 depicts the evolution of the reactants’ concentration
profiles for case 1 (see Table I). The results illustrate how the
two bands approach each other in the early stage of the compu-
tation. Due to weak molecular diffusion effects, before the two
bands overlap, there is little change in the peak concentration of
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Fig. 2. Instantaneous profiles of � and � for case 1. Plots are generated at times (a) � � �, (b) � � �� ��, (c) � � �� ��, and (d) � � �� ��.

TABLE I
SELECTED INPUT CASES. SHOWN ARE VALUES OF THE ELECTROMIGRATION

VELOCITIES (mm/s), INITIAL REACTANT CONCENTRATIONS (mM), FORWARD

REACTION RATE �� � 	, AND BACKWARD REACTION RATE �� 	.
ALSO SHOWN ARE THE DIMENSIONLESS PARAMETERS � AND � AS

WELL AS THE DAMKÖHLER NUMBER, Da

A and B. For these conditions, the peak concentrations of A and
B decrease rapidly when the two bands overlap, and by the time
the bands separate, the peak concentrations drop by approxi-
mately a factor of 20. As shown in Fig. 2(d), after separation
the reactant profiles are no longer symmetric and slight differ-
ences in the peak concentrations of A and B can be observed.
The profiles exhibit a double hump structure with a strong pri-
mary peak that leads a weak local maximum. The behavior of

the reactants concentration profiles for cases 2–4 was found to
be qualitatively similar to that of Case 1; the corresponding plots
are consequently omitted.

Fig. 3 shows instantaneous profiles of and for case
5. As shown in Table I, for this case, has been increased to
0.5, which results in an increased crossing time scale and, con-
sequently, a larger Damköhler number. The results indicate the
profiles of and behave in a qualitatively similar fashion
as in case 1 (Fig. 2). However, for case 5, there is an even more
substantial reduction in the peak values of and , which
drop by approximately a factor of 30 during the crossing. As
further discussed below, this suggests that the overall rate of
progress of the reaction is larger as Da increases.

As shown in Table I, the electromigration velocities for case
6 are the same as in case 3, but the initial concentrations of

and have been reduced by a factor of 20. This results in
a significant drop in the Damköhler number, from
in case 3 to in case 6. Instantaneous profiles of
and for case 6 are plotted in Fig. 4, using the same time
intervals as in Fig. 2. The plots show that for case 6, the behavior
of the reactants’ profiles differs significantly from that of the
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Fig. 3. Instantaneous profiles of � and � for case 5. Plots are generated at times (a) � � �, (b) � � �� ��, (c) � � ��� ��, and (d) � � ��� ��.

previous cases. Specifically, the concentration profiles develop
a weak asymmetry and, unlike the profiles in Figs. 2 and 3, do
not exhibit a secondary trailing peak. An additional distinctive
feature is the prolonged coexistence of and during the
crossing [see Fig. 4(b)]. As expected, for this reduced value of
Da, the drop in the peak concentrations of and is rather
weak, approximately a factor of 3.

The effects of electromigration velocities and Damköhler
number can also be observed in Fig. 5(a)–(f), which depicts
the evolution of product concentration profiles for cases 1–6,
respectively. As shown in Table I, for cases 1–4, Da and the
electromigration velocities of the reactants are held fixed, while

is systematically varied by increasing . For ,
vanishes so that the product concentration profiles does not
propagate. As shown in Fig. 5(a), at the beginning of band
crossing the product concentration profile exhibits
a sharp leading front, followed by a smoothly decaying tail.
As the reaction proceeds, the leading front becomes smoother,
eventually giving the profile a nearly symmetric shape. For the
present case , the product concentration profile has
an appreciably smaller peak and larger width than the initial
reactants’ profile.

A similar behavior is observed in Fig. 5(b), which depicts the
evolution of for case 2, where . However, one
can observe that for this case the final profile has smaller width
and higher peak than in case 1. Furthermore, unlike case 1, the

profile is no longer stationary, but translates to the right with
the product electromigration velocity .

The trends noted above can also be observed for case 3, where
. In particular, as shown in Fig. 5(c), the product

concentration profile for case 3 has slightly larger peak and is
slightly thinner than in the previous cases. In particular, for case
3 the peak product concentration following the band crossing is
close to that of the initial reactants profiles.

When is equal to the average of and (case 4), a
peculiar behavior is observed. As shown in Fig. 5(d), a very
narrow profile with a pronounced peak is observed. Note that
the peak concentration is more than 4 times higher than ini-
tial peak of the reactants profiles. Thus, in the present situa-
tion the product tends to accumulate at a single spatial position
that moves with the average velocity of the reactants. We fi-
nally note that, if is increased further then the presently ob-
served “focusing” effect is greatly diminished. In these cases,
i.e. , the product concentration resembles
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Fig. 4. Instantaneous profiles of � and � for case 6. Plots are generated at times (a) � � �, (b) � � �� ��, (c) � � �� ��, and (d) � � �� ��.

those in Fig. (5a)–(c); the corresponding results are therefore
omitted.

Fig. 5(e) shows instantaneous product concentration profiles
for case 5. Compared with case 3, in case 5 the velocities
and have been doubled. This results in a longer crossing
time scale and consequently a larger Damköhler number. As
can be seen in Fig. 5(c) and (e), however, these changes appear
to have little impact on the shape of the product concentration
profiles. While interaction times evidently differ, in both cases
the profiles develop similar widths and peak values.

Finally, concentration profiles for case 6 are shown in
Fig. 5(f). As shown in Table I, the electromigration velocities
are identical in cases 3 and 6, but the initial reactants concen-
trations are substantially lower in case 6. As a result, in the
latter case the Damköhler number is significantly lower. The
reduction in Damköhler number appears to have little impact
on the shape of the profiles, but does have a noticeable effect
on the rate of progress of the reaction. Specifically, in case 3
the peak product concentration is nearly equal to the initial
reactants’ peak, while the peak product concentration in case 6
is noticeably lower.

The above results indicate that the behavior of the concentra-
tion profiles can be essentially characterized by the Damköhler
number, and by the ratio of the electromigration velocity of the
product with respect to the mean of the reactants electromigra-
tion velocities. The trends with these two parameters, briefly
illustrated above for selected cases, were in fact observed for
a wide range of electromigration velocities, rate constants, and
initial concentrations.

In order to briefly illustrate the above claims, we compute
two measures that characterize the progress of the reaction:
a global measure defined by

(16)

and a local measure given by

(17)

Here, and denote the peak instantaneous values
of the concentrations of A and C, respectively. Note that
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Fig. 5. Instantaneous profiles of � for cases (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6.

can be interpreted as “chemical conversion efficiency” since
it corresponds to the peak fraction of moles of A that are
converted into moles of C by the chemical reaction. On the other
hand, corresponds to the peak spatial product concentration

normalized by the initial peak of the concentration profile
of A. Thus, it reflects the tendency of the peak product
concentration to be larger or smaller than the initial peak
of the reactants.
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Fig. 6. Dependence of � (top) and � (bottom) on Da. Different curves are
generated for cases with � � �, ���, and �� � ����.

Fig. 6(a) shows the dependence of on the Damköhler
number. Plotted are curves generated for ,
and , and for Damköhler numbers in the range

. The figure shows that the three versus
Da curves collapse onto each other, supporting the earlier
claim that the overall conversion of reactants into products
is governed by the Damköhler number, and is essentially
independent of the ratios of electromigration velocities. Note
that the curves for are monotonically increasing, from about
45% at low Da to about 98% at higher Da. Thus, as observed
earlier, consumption of the reactants increases with increasing
Damköhler numbers.

Meanwhile, as shown in Fig. 6(b), distinct versus Da curves
are obtained for each value of . For all three values of , the
curves increase monotonically with Da. For and , the
curves saturate for , while for substan-
tial variation is observed throughout the range considered. The
largest values of are achieved when , i.e. when
the product electromigration velocity is equal to the average of
the electromigration velocities of the reactants. In particular, for
this value of , is substantially larger than unity at high Da;

this indicates that in this regime the peak product concentration
is several times larger than the peak reactant concentration.

We finally note that the results in Fig. 6 are consistent with
earlier observations of the behavior of the concentration pro-
files, and their dependence on relevant parameters. In addition,
the results enable us to generalize previously observed trends to
a wider range of operating conditions.

V. ESTIMATION OF RATE CONSTANTS

We now explore the possibility of extracting reaction rates
from the evolution of concentration profiles. This exercise is
motivated by optical measurements of species concentrations,
which give spatial profiles at selected time intervals [24]. In
many cases, the impact of experimental noise may be reduced
by analyzing moments of the profile instead of local values.
In this section, we examine two different means for exploiting
such integral measures. In the first approach (see Section V-A),
concentration profiles of both reactants and of the product are
assumed available. A different scenario is considered in Sec-
tion V-B, which involves interrupting the electric field once the
bands overlap. For this scenario, an alternative means of es-
timating chemical rate constants is considered which only as-
sumes that the reactants’ concentration profiles are measured.

A. Multiple Measurements

When the concentrations of both reactants and of the product
are simultaneously measured, a simple approach can be imple-
mented to deduce the reaction rates. Specifically, by integrating
(3) over the domain or, in the case of experimental measure-
ments, over a sufficiently wide window, the transport (convec-
tion, electromigration and diffusion) terms drop out, and one
obtains

(18)

If the signals for , and are available, then one
can perform a straightforward least-squares regression of the
form

(19)

to determine unknown coefficients and . These can be im-
mediately identified with and . In particular, based on the
computed results for case 3 we obtain and

. These values are in very good agreement with the
rate parameters used as input. Similar experience was observed
for other cases considered; the corresponding results are there-
fore omitted.

B. Interrupted Flow Experiment

In many situations, simultaneous measurement of all three
species concentrations is either not possible or excessively dif-
ficult. In this section, we explore the possibility of deducing re-
action rates with fewer experimental signals. Specifically, we
consider what we call an “interrupted flow” experiment, which
consists of first driving the reactants so that they overlap and
then suddenly switching off the electrokinetic pumping (see also
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Fig. 7. Profiles of reactants concentration at the time the flow is interrupted.

Fig. 8. Comparison of analytical (dashed) and numerical (solid) results for ���� and ����.

[16], [17]). The advantage of this approach is that, in the param-
eter regime of interest, once the flow is interrupted, the evolu-
tion of the concentration fields is primarily dominated by the re-
action and only weakly affected by diffusion. The assumptions
will be verified based on simulation results below.

The simulation conditions are the same as those in the pre-
vious section. However, once the reactants overlap, all velocities
are suddenly switched to zero. The reactant concentration pro-
files at the time the flow is interrupted are shown in Fig. 7. This
mimics the sudden interruption of the electric field since, due
to the very low Reynolds number and the absence of a driving
pressure gradient, the bulk velocity decays rapidly to zero.

We start by examining the effects of diffusion on the evolu-
tion of the concentration field. In Fig. 8, we contrast the com-
puted values of and at the location of the peak reactant
concentration (see Fig. 7) to the analytical solution for a purely

reactive system [see (11)]. The results show that the two predic-
tions are in reasonably close agreement, indicating that for the
present set of conditions diffusion has a small effect on the evo-
lution of and throughout the decay period.

Combined with the weak effect of diffusion, the absence of
advective or electromigration effects then offers the following
possibility of extracting the reaction rates. From (7) we have

(20)

Integrating over a fixed, sufficiently large window, we have:

(21)
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Fig. 9. Evolution of �������� using first and second-order approximations. The time step used in the finite difference formulae corresponds to that of the
simulations, i.e., �� � �� �.

Fig. 10. Evolution of ������� using a second-order approximation. The time step used in the finite difference formula corresponds to the length of the sampling
interval, � . We use � � ����, �	�� and 	���.

which can be rewritten as

(22)

where . Thus, if time resolved measurements evolu-
tion of one reactant concentration are performed, and the “ini-
tial” concentration of the other reactant is also measured, one
can determine the coefficients , , and by linear regression
(least-squares) from the data. Comparing (21) and (22), one can
immediately identify the coefficients A and B with the back-
ward rate and forward rate, respectively.

TABLE II
LEAST-SQUARES INTERPOLATION RESULTS USING THE ANALYTICAL

SOLTUTION FOR A PURELY REACTIVE SYSTEM

Note, however, that unlike the approach of the previous sec-
tion, the present approach is only approximate, and its success
hinges on situations where Da is not so large that the reactants
are consumed very quickly (see Fig. 6), before one can inter-
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TABLE III
LEAST-SQUARES INTERPOLATION RESULTS FOR DIFFERENT SAMPLING TIMES � USING THE COMPUTED SOLUTIONS. SHOWN ARE RESULTS OBTAINED WHEN

MOLECULAR DIFFUSION ACCOUNTED FOR �� �� �� AND WHEN IT IS IGNORED �� � ��. I N THE PRESENT CASE, ESTIMATES OF ������ ARE OBTAINED FROM A

CENTERED DIFFERENCE APPROXIMATION USING THE COMPUTATIONAL TIME STEP ��

TABLE IV
LEAST-SQUARES INTERPOLATION RESULTS FOR DIFFERENT SAMPLING TIMES � USING THE COMPUTED SOLUTIONS. SHOWN ARE RESULTS OBTAINED WHEN

MOLECULAR DIFFUSION ACCOUNTED FOR �� �� �� AND WHEN IT IS IGNORED �� � ��. IN THE PRESENT CASE, ESTIMATES OF ������ ARE OBTAINED FROM A

CENTERED DIFFERENCE APPROXIMATION USING THE SAMPLING TIME �

rupt the flow. Also, note that if pointwise, time-resolved mea-
surements are sufficiently accurate, the regression analysis can
be performed on (20) directly. In this case pointwise measure-
ment of only a single reactant concentration is needed, with the
coefficient of providing . This latter possibility, however,
is not explored in the present study.

The evolution of is shown in Figs. 9 and 10. In Fig. 9,
we rely on first- and second-order formulas for evaluating the
derivative, and in both cases the time step corresponds to that
used in the computations. In Fig. 10, we rely only on a second-
order approximation, with a sampling time step that is signifi-
cantly larger than that used in the computations. This mimics ac-
tual experiments, where sampling at very high frequencies may
neither be possible nor desirable. As shown in the figures, in all
cases is well approximated.

The least-squares procedure is tested using the analytical so-
lution for a purely reactive system at different sampling time in-
tervals. As shown in Table II the interpolated coefficients match
the actual input parameters and . Note,
however, that at the larger sampling interval very small errors
appear in the estimate of , even though the exact solution is
used as input to the regression. These weak errors reflect the am-
plification of round-off errors due to the stiffness of the linear
equation system. As further discussed below, the impact of this
stiffness is substantially more pronounced when numerical re-
sults are used, especially when molecular diffusion effects are
accounted for.

We now apply the regression analysis directly to the output
of the computations. The analysis is conducted in two versions.
In the first version, we simply switch off the electric field, as
outlined above. In the second, both diffusion and electromigra-
tion are interrupted. Comparison of the two sets of results thus
enables us to directly assess the role of diffusion on the extrap-
olated rates.

As shown in (22), the present analysis requires estimates of
. In the results below, these estimates are obtained using a

second-order centered-difference formula. In the results shown

in Table III, this approximation is performed within the simula-
tions, using the computational time step . The sam-
pling time, , denotes the time interval between neighboring
points in the least-squares procedure. Thus, in Table III, the
derivative is estimated using a finer time step than the
sampling time . In Table IV, this exercise is repeated with

estimated from the sampled data, i.e., using a time step
equal to the sampling time . This latter case mimics more
closely the experimental analysis, as data between neighboring
points is not available.

Examination of the results in Tables III and IV indicates that:

1) There is better agreement between the estimated and
input/known values ( , ) of the
reaction rates for the case where the derivative is
estimated based on the computational time step. Thus,
for fixed , the agreement between the estimated and
input values deteriorates when the derivative is estimated
on a wider time interval.

2) Kinetic rate estimates obtained with molecular diffusion
ignored are in better agreement with the input values than
estimates obtained in the diffusive cases. This indicates
that even though diffusion may have weak a effect on the
absolute values of concentration, it still has a substantial
effect on the least-squares predictions, especially at large
sampling intervals.

3) The extrapolated backward rate is highly sensitive to the
presence of diffusion and to the sampling interval . Ex-
cept for small and negligible diffusion, the interrupted
flow approach proposed here does not seem to be a prac-
tical method of estimating the backward rate, . The
high-sensitivity of the estimated values of can be traced
to the stiffness of the equation system, which leads to an
ill-conditioned matrix.

4) In contrast, the extrapolated values of are much more
robust, and provide reasonable estimates of the forward
rate. In particular, for all cases analyzed, the estimated
value of differs by less than 4% from the input value.
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VI. CONCLUSION

A numerical study of band-crossing reactions was conducted
using a quasi-1-D computational model. The model accounts for
the evolution of species concentrations due to bulk advection,
electromigration, diffusion and chemical reaction. The latter is
described using a single step, reversible mechanism involving
two reactants and one product. Attention is focused on a fast
reaction between initially unmixed bands.

A parametric study of the behavior of the species profiles
during the crossing was performed. Simulation results were in-
terpreted in terms of the Damköhler number and of the ratios
of the electromigration velocities of the reactant and product.
As expected, the results indicate that the overall consumption
of the reactants increases as the Damköhler number increases.
The results also indicate that the structure of the concentration
profile is strongly dependent on the differences of electromigra-
tion velocities. In particular, when the product electromigration
velocity is equal to the average of the reactants electromigration
velocities, the product concentration exhibits a thin profile with
peak values significantly higher than the initial reactants’ con-
centrations. This stacking effect may provide a useful means of
sample preconcentration based on reaction rates and mobilities,
and for enhancing the sensitivity of a variety of on-chip assays.
For higher or lower velocity, the product concentration profiles
are spatially wider and exhibit significantly lower peak values.

The simulations were then used to explore the possibility
of extracting forward and backward rates based on time re-
solved observation of integral moments of species concentra-
tions. When signals of all three species are observed, a robust
extraction procedure can be implemented, which results in ex-
cellent estimates of the forward and reverse rates. The simula-
tions are also used to investigate interrupted flow experiments
where only the reactants’ concentrations are measured. In these
situations, an approximate analysis can be applied to extract re-
action rate parameters. Results indicate that in the case of fast
forward reaction this approach yields robust estimates of the for-
ward rate constant, but that the reverse rate parameter is not ac-
curately predicted.
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